离散型随机变量的期望和方差是什么?

 我来答
社无小事
高能答主

2022-01-02 · 游戏也是生活的态度。
社无小事
采纳数:2168 获赞数:20367

向TA提问 私信TA
展开全部

离散型随机变量的方差:

D(X) = E{[X - E(X)]^2}.(1)

=E(X^2) - (EX)^2.(2)

(1)式是方差的离差表示法。

(2)式表示:方差 = X^2的期望 - X的期望的平方。

概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。

方差统计

方差在统计描述和概率分布中各有不同的定义,并有不同的公式,在统计描述中,方差用来计算每一个变量(观察值)与总体均数之间的差异。为避免出现离均差总和为零,离均差平方和受样本含量的影响,统计学采用平均离均差平方和来描述变量的变异程度。

富港检测技术(东莞)有限公司_
2024-04-02 广告
比如说P(x=k)=1/k^2,(k=1、2 )这样求期望就是求一个发散的无穷级数的和函数的问题,所以就不存在了。离散型随机变量的概率和必定等于1。对于具有可数个样本点来说,可以断言其中无穷多个样本点的概率小于任意值。但问题在于无论是期望还... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式