线性相关行列式等于零吗?
1个回答
展开全部
线性相关行列式可以等于零。
线性相关行列式等于零的意思:线性关系是当行或列可以线性表示,你可以执行基本的转换,取一行或列,你把另一个行或列,最后一行,都是零,和行列式等于零。所以行列式等于0是线性相关的。
线性相关时,向量可以被其他向量线性表示,因此通过初等变换,可以把某一行或列化成0,从而此时行列式为0。
若n阶行列式|αij|中某行(或列),行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。
线性无关和线性相关
1、对于任一向量组而言,不是线性无关的就是线性相关的。
2、向量组只包含一个向量a时,a为0向量,则说A线性相关; 若a≠0, 则说A线性无关。
3、包含零向量的任何向量组是线性相关的。
4、含有相同向量的向量组必线性相关。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询