如何求高中不等式之最小值?

 我来答
八卦娱乐分享
高能答主

2022-08-11 · 开开心心聊八卦娱乐。
八卦娱乐分享
采纳数:1009 获赞数:72006

向TA提问 私信TA
展开全部

高中4个基本不等式:√[(a²+b²)/2]≥(a+b)/2≥√ab≥2/(1/a+1/b)。平方平均数≥算术平均数≥几何平均数≥调和平均数。

基本不等式两大技巧:

“1”的妙用。题目中如果出现了两个式子之和为常数,要求这两个式子的倒数之和的最小值,通常用所求这个式子乘以1,然后把1用前面的常数表示出来,并将两个式子展开即可计算。如果题目已知两个式子倒数之和为常数,求两个式子之和的最小值,方法同上。

调整系数。有时候求解两个式子之积的最大值时,需要这两个式子之和为常数,但是很多时候并不是常数,这时候需要对其中某些系数进行调整,以便使其和为常数。

基本不等式中常用公式:

(1)√((a²+b²)/2)≥(a+b)/2≥√ab≥2/(1/a+1/b)。(当且仅当a=b时,等号成立)。

(2)√(ab)≤(a+b)/2。(当且仅当a=b时,等号成立)。

(3)a²+b²≥2ab。(当且仅当a=b时,等号成立)。

(4)ab≤(a+b)²/4。(当且仅当a=b时,等号成立)。

(5)||a|-|b| |≤|a+b|≤|a|+|b|。(当且仅当a=b时,等号成立)。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式