相遇问题奥数解析

 我来答
抛下思念17
2022-07-13 · TA获得超过1.1万个赞
知道大有可为答主
回答量:6490
采纳率:99%
帮助的人:36.8万
展开全部

相遇问题奥数解析1

  甲、乙二人沿铁路相向而行,速度相同,一列火车从甲身边开过用了8秒钟,离甲后5分钟又遇乙,从乙身边开过,只用了7秒钟,问从乙与火车相遇开始再过几分钟甲乙二人相遇?

  答案与解析:

  要求过几分钟甲、乙二人相遇,就必须求出甲、乙二人这时的距离与他们速度的关系,而与此相关联的是火车的运动,只有通过火车的运动才能求出甲、乙二人的距离.火车的运行时间是已知的,因此必须求出其速度,至少应求出它和甲、乙二人的速度的比例关系.由于本问题较难,故分步详解如下:

  ①求出火车速度V车与甲、乙二人速度V人的关系,设火车车长为l,则:

  (i)火车开过甲身边用8秒钟,这个过程为追及问题:故l=(V车-V人)×8;(1)

  (ii)火车开过乙身边用7秒钟,这个过程为相遇问题:故l=(V车+V人)×7.(2)

  由(1)、(2)可得:8(V车-V人)=7(V车+V人),所以,V车=l5V人。

  ②火车头遇到甲处与火车头遇到乙处之间的距离是:(8+5×6O)×(V车+V人)=308×16V人=4928V人。

  ③求火车头遇到乙时甲、乙二人之间的距离。火车头遇甲后,又经过(8+5×60)秒后,火车头才遇乙,所以,火车头遇到乙时,甲、乙二人之间的距离为:4928V人-2(8+5×60)V人=4312V人。

  ④求甲、乙二人过几分钟相遇?

相遇问题奥数解析2

  相遇问题

  重点理解关键词:同时 相对(相向)而行 速度和 两地路程 相遇

  相遇问题基本数量关系式:

  两地距离=速度和×相遇时间

  练习:

  1.两列火车同时从两地对开。甲车每小时行62千米,乙车每小时行70千米,经过 时两车相遇。两地间的铁路长多少千米?

  2.两台机器生产同一种零件。第一台 时生产20个零件,第二台每小时生产80个零件。两台机器同时生产98个零件需要几小时?

  3.甲乙两车同时从相距90千米的两地相对开出, 时后两车在途中相遇。已知甲车每小时行60千米,那么乙车每小时行多少千米?

  4.两列火车同时从两地对开。甲车每小时行62km,乙车每小时行70km,经过 时两车还相距12km。两地间的铁路长多少km?

  5.一辆客车从A市行驶到B市,60km/时,2时后一辆货车从B市行驶到A市, 80km/时,货车行了5时正好与客车相遇。A B两市公路长多少km?

相遇问题奥数解析3

  “有的母牛比一般人具有更健全的头脑,有一位农夫就曾这样认为”,瞧!有一天我的那头老家伙,有着斑纹的母牛正站在距离桥梁中心点5英尺远的地方,平静地注视着河水发呆,突然,他发现一列特别快车以每小时90英里的速度向它奔驰而来,此时,火车已经到达靠近母牛一端的桥头附近,只有两座桥长的距离了。母牛毫不犹豫,马上不失时机地迎着飞奔而来的火车作了一次猛烈冲刺,终于得救了。

  此时距离火车头只剩1英尺了,如果母牛按照人的本能,以同样的速度离开火车逃跑,那么母牛的屁股将有3英寸要留在桥上!试问:桥梁的长度是多少?这只母牛狂奔的速度是多少?(1英尺=12英寸)

  【解答】整体思考,相遇和追及,母牛跑了1个桥长少3英寸,火车行了5个桥长少12+3=15英寸,火车速度刚好是母牛速度的5倍,则母牛每小时行90÷5=18英里。

  迎面而行时,母牛行了0.5个桥长少5英尺,那么火车应该行了0.5×5=2.5个桥长多5×5=25英尺,也是2个桥长少1英尺,相比较2.5-2=0.5个桥长是25-1=24英尺,那么桥长是24÷0.5=48英尺。

相遇问题奥数解析4

  1.甲乙同时从东西两镇相向步行,在距离西镇20千米处相遇,相遇后两人继续前进,甲至西镇,乙至东镇后立即返回,两人又在距东镇15千米处相遇,求东西两镇的距离?

  2.快慢车同时从甲乙两站相对出发,6小时相遇,这时快车离乙站还有240千米,已知慢车从乙站到甲站需15小时,两车到站后,快车停车0.5小时,慢车停一小时返回,从第一次相遇到途中在相遇,经过多少小时?

  1.(没想到好的算术解法,先用方程做一下)

  设两镇相距x千米

  第一次相遇时,甲走了x-20千米,乙走了20千米

  第二次相遇时,甲走了2x-15千米,一走了x+15千米

  两人的`速度比是一定的,那么在相同时间内的路程比也是一定的

  (x-20)/20=(2x-15)/(x+15)

  x^2-45x=0,x不可能为0

  所以x=45千米

  2.

  快车离乙站还有240千米,即慢车在6小时内走了240千米

  慢车每小时走:240/6=40千米

  两站相距:40×15=600千米

  快车6小时内走了600-240=360千米

  所以快车每小时走:360/6=60千米

  快车到达乙站需要:600/60=10小时

  慢车到达甲站需要:600/40=15小时

  等到慢车从甲站再次出发时,

  快车已经离开乙站,走了15-10-0.5+1=5.5小时

  走了5.5×60=330千米

  此时两车相距600-330=270千米

  两车相遇还需要270/(60+40)=2.7小时

  所以两车从出发到第二次相遇一共经过:

  10+0.5+5.5+2.7=18.7小时

  从第一次相遇到途中再次相遇,经过:18.7-6=12.7小时

  兄妹二人在周长30米的圆形水池边玩,从同一地点同时背向绕水池而行,兄每秒走1.3米,妹每秒走1.2米,他们第十次相遇时,妹妹还需走()米才能回到出发点.

  考点:多次相遇问题.

  分析:第十次相遇,妹妹已经走了:30×10÷(1.3+1.2)×1.2=144 (米). 144÷30=4(圈)…24(米). 30-24=6 (米).还要走6米回到出发点.

  解答:解:第十次相遇时妹妹已经走的路程:

  30×10÷(1.3+1.2)×1.2,

  =300÷2.5×1.2,

  =144(米).

  144÷30=4(圈)…24(米).

  30-24=6 (米).

  还要走6米回到出发点.

  故答案为6米.

  点评:此题属于多次相遇问题,关键在于先求出第十次相遇时妹妹已经走的路程.

  有人沿公路前进,对面来了一辆汽车,他问司机:“后面有自行车吗?”司机回答:“十分钟前我超过一辆自行车”,这人继续走了十分钟,遇到自行车,已知自行车速度是人步行速度的三倍,问汽车的速度是步行速度的()倍.

  考点:多次相遇问题.

  分析:人遇见汽车的时候,离自行车的路程是:(汽车速度-自行车速度)×10,这么长的路程要自行车和人合走了10分钟,即:(自行车+步行)×10,等式:(汽车速度-自行车速度)×10=(自行车+步行)×10,即:汽车速度-自行车速度=自行车速度+步行速度.汽车速度=2×自行车速度+步行速度,又自行车的速度是步行的3倍,所以汽车速度是步行的7倍.

  解答:(汽车速度-自行车速度)×10=(自行车+步行)×10,

  即:汽车速度-自行车速度=自行车速度+步行速度.

  汽车速度=2×自行车速度+步行,又自行车的速度是步行的3倍,

  所以汽车速度=(2×3+1)×步行速度=步行速度×7.

  故答案为:7.

  点评:解答此题的关键是要推出:汽车与自行车的速度差等于人与自行车的速度和.

  1.甲、乙两个运动员分别从相距100米的直跑道两端同时相对出发,甲以每秒6.25米,乙以每秒3.75米的速度来回匀速跑步,他们共同跑了8分32秒,在这段时间内两人多次相遇(两人同时到达同一地点叫做相遇).他们最后一次相遇的地点离乙的起点有()米.甲追上乙()次,甲与乙迎面相遇()次.

  分析:8分32秒=512(秒).

  ①当两人共行1个单程时第1次迎面相遇,共行3个单程时第2次迎面相遇,共行2n-1个单程时第n次迎面相遇.

  因为共行1个单程需100÷(6.25+3.75)=10(秒),所以第n次相遇需10×(2n-1)秒,

  由10×(2n-1)=510,解得n=26,即510秒时第26次迎面相遇.

  ②此时,乙共行3.75×510=1912.5(米),离10个来回还差200×10-1912.5=87.5(米),即最后一次相遇地点距乙的起点87.5米.

  ③类似的,当甲比乙多行1个单程时,甲第1次追上乙,多行3个单程时,甲第2次追上乙,多行2n-1个单程时,甲第n次追上乙.因为多行1个单程需100÷(6.25-3.75)=40(秒),所以第n次追上乙需40×(2n-1)秒.当n=6时,40×(2n

  -1)=440<512;当n=7时,40×(2n-1)=520>512,所以在512秒内甲共追上乙6次.

  解答:解:①当两人共行1 个单程时第1 次迎面相遇,共行3 个单程时第2 次迎面相遇,共行2n-1个单程时第n次迎面相遇.

  因为共行1 个单程需100÷(6.25+3.75)=10(秒),

  8 分32秒=512秒,(512-10)÷(10×2)≈25(次),所以25+1=26(次).

  ②最后一次相遇地点距乙的起点:

  200×10-3.75×510,

  =20xx-1912.5,

  =87.5(米).

  ③多行1个单程需100÷(6.25-3.75)=40(秒),所以第n次追上乙需40×(2n-1)秒.

  当n=6时,40×(2n-1)=440<512;当n=7时,40×(2n-1)=520>512,所以在512秒内甲共追上乙6次.

  故答案为:87.5米;6次;26次.

  1.前进钢铁厂用两辆汽车从距工厂90千米的矿山运矿石,现有甲、乙两辆汽车,甲车自矿山,乙车自钢铁厂同时出发相向而行,速度分别为每小时40千米和50千米,到达目的地后立即返回,如此反复运行多次,如果不计装卸时间,且两车不作任何停留,则两车在第三次相遇时,距矿山多少千米?

  分析:在往返来回相遇问题中,第一次相遇两人合走完一个全程,以后每次再相遇,都合走完两个全程.即:两人相遇时是在他们合走完1,3,5个全程时.然后根据路程÷速度和=相遇时间解答即可.

  解答:解答:①第三次相遇时两车的路程和为:

  90+90×2+90×2,

  =90+180+180,

  =450(千米);

  ②第三次相遇时,两车所用的时间:

  450÷(40+50)=5(小时);

  ③距矿山的距离为:40×5-2×90=20(千米);

  答:两车在第三次相遇时,距矿山20千米.

  点评:在多次相遇问题中,相遇次数n与全程之间的关系为:1+(n-1)×2个全程=一共行驶的路程.

  王明从A城步行到B城,同时刘洋从B城骑车到A城,1.2小时后两人相遇.相遇后继续前进,刘洋到A城立即返回,在第一次相遇后45分钟又追上了王明,两人再继续前进,当刘洋到达B城后立即折回.两人第二次相遇后()小时第三次相遇.

  考点:多次相遇问题.

  分析:由题意知道两人走完一个全程要用1.2小时.从开始到第三次相遇,两人共走完了三个全程,故需3.6小时.第一次相遇用了一小时,第二次相遇用了40分钟,那么第二次到第三次相遇所用的时间是:3.6小时-1.2小时-45分钟据此计算即可解答.

  解答:解:45分钟=0.75小时,

  从开始到第三次相遇用的时间为:

  1.2×3=3.6(小时);

  第二次到第三次相遇所用的时间是:

  3.6-1.2-0.75

  =2.4-0.75,

  =1.65(小时);

  答:第二次相遇后1.65小时第三次相遇.

  故答案为:1.65.

  点评:本题主要考查多次相遇问题,解题关键是知道第三次相遇所用的时间.

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式