1十3+5十7十9...十97十99的简算过程是什么?
1个回答
展开全部
1十3+5十7十9...十97十99的简算过程如下:
1+3+5+7+9+……+95+97+99
=(1+99) +(3+97) +(5+95) +...........(49+51)
=25*100
=2500
1+3+5+7+9+……+95+97+99可以发现规律“头”和“尾”相加等于100,式子中一共有50个奇数
所以原式=((1+99)+(3+97)+(5+95)+……+(47+53)+(49+51))=100×25=2500。
简便计算方法:
1、在同级运算中,可以任意交换数字的位置,但要连着前面的符号一起交换。(加法或乘法交换律)
2 、在同级运算中,加号或乘号后面可以直接添括号,去括号;减号、除号后面添括号,去括号,括号里面的要变号。(加法或乘法结合律)
3、凑一法,凑十法,凑百法,凑千法:“前面凑九,末尾凑十”。
必记:25找4凑100,125找8凑1000 (凑整思想)。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询