原函数是奇函数导数一定是偶函数吗
1个回答
展开全部
不一定,可能是偶函数,也可能是奇函数,要看具体的题目。令f(x)=x^2,(x0),f(x)在原点没有定义,同时不是偶函数,但f'(x)=2x(x不等于0)是奇函数。验证奇偶性的前提要求函数的定义域必须关于原点对称。
奇函数求导不一定是偶函数。奇函数的函数图像是关于原点对称的,而偶函数的函数图像是关于y轴对称的,因此如果想要分辨一个函数是奇函数还是偶函数,我们可以从该函数的函数图形着手进行分析。
另外就函数的定义来讲,在函数的定义域内,任意一个未知数x都可以使得等式f(-x)=-f(x)成立的话,那我们就可以判定这个函数就是奇函数。如果在函数的定义域内,任意一个未知数x都可以使得等式ff(-x)=f(x)成立的话,那我们就可以判定这个函数就是偶函数。
除此之外,我们还要知道,就奇函数来讲,奇函数两个以原点中心对称的区间内的单调性是相同的,也可以认为在整个定义域内,奇函数的单调性是具有一致性。而偶函数在关于y轴对称的两个区间的单调性是相反了,一个区间递增的话,与其对称的区间则是递减的。
奇函数求导不一定是偶函数。奇函数的函数图像是关于原点对称的,而偶函数的函数图像是关于y轴对称的,因此如果想要分辨一个函数是奇函数还是偶函数,我们可以从该函数的函数图形着手进行分析。
另外就函数的定义来讲,在函数的定义域内,任意一个未知数x都可以使得等式f(-x)=-f(x)成立的话,那我们就可以判定这个函数就是奇函数。如果在函数的定义域内,任意一个未知数x都可以使得等式ff(-x)=f(x)成立的话,那我们就可以判定这个函数就是偶函数。
除此之外,我们还要知道,就奇函数来讲,奇函数两个以原点中心对称的区间内的单调性是相同的,也可以认为在整个定义域内,奇函数的单调性是具有一致性。而偶函数在关于y轴对称的两个区间的单调性是相反了,一个区间递增的话,与其对称的区间则是递减的。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询