
圆周率是怎样求出的
2个回答
展开全部
圆周率的计算方法是:圆周长÷圆直径。
圆周率(Pi)是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。π也等于圆形之面积与半径平方之比。是精确计算圆周长、圆面积、球体积等几何形状的关键值。在分析学里,π可以严格地定义为满足sin x = 0的最小正实数x。
圆周率用希腊字母 π(读作pài)表示,是一个常数(约等于3.141592654),是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。在日常生活中,通常都用3.14代表圆周率去进行近似计算。而用十位小数3.141592654便足以应付一般计算。即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。
1965年,英国数学家约翰·沃利斯(John Wallis)出版了一本数学专著,其中他推导出一个公式,发现圆周率等于无穷个分数相乘的积。

2023-05-24 广告
ATAGO爱拓成立于1940年,总部位于日本东京,拥有逾80年光学测量仪器的研究开发与生产制造经验,是专业的折光仪生产企业,其主要产品为折光仪及基于折光法原理测量多种物质浓度的衍生浓度计。020-38106065。...
点击进入详情页
本回答由黄小姐提供
展开全部
中国,魏晋时,刘徽曾用使正多边形的边数逐渐增加去逼近圆周的方法(即“割圆术”),求得π的近似值3.1416。 圆周率
汉朝时,张衡得出π的平方除以16等于5/8,即π等于10的开方(约为3.162)。虽然这个值不太准确,但它简单易理解,所以也在亚洲风行了一阵。 王蕃(229-267)发现了另一个圆周率值,这就是3.156,但没有人知道他是如何求出来的。 公元5世纪,祖冲之和他的儿子以正24576边形,求出圆周率约为355/113,和真正的值相比,误差小于八亿分之一。这个纪录在一千年后才给打破。 印度? 约在公元530年,数学大师阿耶波多利用384边形的周长,算出圆周率约为√9.8684。 婆罗门笈多采用另一套方法,推论出圆周率等于10的算术平方根。
欧洲
斐波那契算出圆周率约为3.1418。 韦达用阿基米德的方法,算出3.1415926535<π<3.1415926537 他还是第一个以无限乘积叙述圆周率的人。 鲁道夫万科伦以边数多过32000000000的多边形算出有35个小数位的圆周率。 华理斯在1655年求出一道公式π/2=2×2×4×4×6×6×8×8...../3×3×5×5×7×7×9×9...... 欧拉发现的e的iπ次方加1等于0,成为证明π是超越数的重要依据。
汉朝时,张衡得出π的平方除以16等于5/8,即π等于10的开方(约为3.162)。虽然这个值不太准确,但它简单易理解,所以也在亚洲风行了一阵。 王蕃(229-267)发现了另一个圆周率值,这就是3.156,但没有人知道他是如何求出来的。 公元5世纪,祖冲之和他的儿子以正24576边形,求出圆周率约为355/113,和真正的值相比,误差小于八亿分之一。这个纪录在一千年后才给打破。 印度? 约在公元530年,数学大师阿耶波多利用384边形的周长,算出圆周率约为√9.8684。 婆罗门笈多采用另一套方法,推论出圆周率等于10的算术平方根。
欧洲
斐波那契算出圆周率约为3.1418。 韦达用阿基米德的方法,算出3.1415926535<π<3.1415926537 他还是第一个以无限乘积叙述圆周率的人。 鲁道夫万科伦以边数多过32000000000的多边形算出有35个小数位的圆周率。 华理斯在1655年求出一道公式π/2=2×2×4×4×6×6×8×8...../3×3×5×5×7×7×9×9...... 欧拉发现的e的iπ次方加1等于0,成为证明π是超越数的重要依据。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |