∫sin(1/x)dx
1个回答
展开全部
令u=1/x,则du=-x^(-2)dx=-1/x^2dx ,则dx=-x^2du=-1/u^2du
∫sin1/xdx=∫sinu*(-1/u^2)du=∫sinudx^(-1)
用分部积分法:
∫sin1/xdx=∫sinu*(-1/u^2)du=∫sinud(1/u)=sinu/u-∫1/udsinu=sinu/u-∫cosu/udu
到了这里,就可以发现出现了∫cosu/udu,我们知道∫cosu/udu是不可积的,为不可积函数.故此函数也为不可积函数.
∫sin1/xdx=∫sinu*(-1/u^2)du=∫sinudx^(-1)
用分部积分法:
∫sin1/xdx=∫sinu*(-1/u^2)du=∫sinud(1/u)=sinu/u-∫1/udsinu=sinu/u-∫cosu/udu
到了这里,就可以发现出现了∫cosu/udu,我们知道∫cosu/udu是不可积的,为不可积函数.故此函数也为不可积函数.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
网易云信
2023-12-06 广告
2023-12-06 广告
UIkit是一款轻量级、模块化、基于jQuery的UI框架,它提供了大量易于使用的UI组件,包括按钮、表单、表格、对话框、通知等等。UIkit的设计理念是尽可能地简洁和灵活,开发者可以根据自己的需求自由地选择需要的组件和样式,从而快速构建出...
点击进入详情页
本回答由网易云信提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询