机器学习算法
机器学习算法如下:
机器学习(MachineLearning,ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。
它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎。
揭开神秘的机器学习算法:
我们越来越多地看到机器学习算法在实用和可实现的目标上的价值,例如针对数据寻找可用的模式然后进行预测的机器学习算法。通常,这些机器学习算法预测模型用于操作流程以优化决策过程,但同时它们也可以提供关键的洞察力和信息来报告战略决策。
机器学习算法的基本前提是算法训练,提供特定的输入数据时预测某一概率区间内的输出值。请记住机器学习算法的技巧是归纳而非推断——与概率相关,并非最终结论。构建这些机器学习算法的过程被称之为机器学习算法预测建模。
一旦掌握了这一机器学习算法模型,有时就可以直接对原始数据机器学习算法进行分析,并在新数据中应用该机器学习算法模型以预测某些重要的信息。模型的输出可以是机器学习算法分类、机器学习算法可能的结果、机器学习算法隐藏的关系、机器学习算法属性或者机器学习算法估计值。
机器学习算法技术通常预测的是绝对值,比如标签、颜色、身份或者质量。比如,某个机器学习算法主题是否属于我们试图保留的用户?用户会付费购买吗?用户会积极响应邀约吗?
如果我们关心的是机器学习算法估算值或者连续值,机器学习算法预测也可以用数字表示。输出类型决定了最佳的学习方法,并会影响我们用于判断模型质量的尺度。
广告 您可能关注的内容 |