证明(A并B)-B=A-AB=A-B
1个回答
2022-12-11 · 百度认证:北京惠企网络技术有限公司官方账号
关注
展开全部
因为A∪B=A+B-AB
所以(A∪B)-B=A+B-AB-B=A-AB
A-B=ABˉ=A-AB
扩展资料
并集的性质:
1、A∪B,B A∪B,A∪A=A,A∪∅=A,A∪B=B∪A
2、若A∩B=A,则A∈B,反之也成立;
3、若A∪B=B,则A∈B,反之也成立。
4、若x∈(A∩B),则x∈A且x∈B;
5、若x∈(A∪B),则x∈A,或x∈B。
给定两个集合A,B,把他们所有的元素合并在一起组成的集合,叫做集合A与集合B的并集,记作A∪B,读作A并B。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询