怎样理解连续型随机变量的分布函数“右连续性”?
2022-12-11 · 百度认证:北京惠企网络技术有限公司官方账号
首先纠正一点,分布函数是对整个实直线都有定义的。对于任意的x2<x1,都可以计算出F(x2)的值。
初等概率中对随机变量的定义是,X是实值函数,且对任意的x,事件{X<=x}都可求概率,则称X是个随机变量,而且定义分布函数F(x)=P{X<=x}.所以分布函数是在整个实直线上定义的。
左连续和右连续的区别在于计算F(x)时,X=x点的概率是否计算在内。对于连续型随机变量而言,因为一点上的概率等于零;
对于离散型随机变量,如果P{X=x} ≠0,则左连续和右连续时的F(x)值就不相同了。F(x) = P(X < x),看P(X = 0)=1的情况,当x < 0时,F(x) = 0,但是当x >= 0时,F(x) = 1。
扩展资料:
离散型(discrete)随机变量即在一定区间内变量取值为有限个或可数个。例如某地区某年人口的出生数、死亡数,某药治疗某病病人的有效数、无效数等。离散型随机变量通常依据概率质量函数分类,主要分为:伯努利随机变量、二项随机变量、几何随机变量和泊松随机变量。
连续型(continuous)随机变量即在一定区间内变量取值有无限个,或数值无法一一列举出来。例如某地区男性健康成人的身长值、体重值,一批传染性肝炎患者的血清转氨酶测定值等。有几个重要的连续随机变量常常出现在概率论中,如:均匀随机变量、指数随机变量、伽马随机变量和正态随机变量。
参考资料来源:百度百科-随机变量