f(x)=2x+1/x-1在(1,正无穷)上为单调增函数
1个回答
展开全部
命题错误,应为单调减
(一)
f(x) = (2x+1)/(x-1) = {2(x-1)+3}/(x-1) = 2 + 3/(x-1),x≠1
在(1,正无穷,)x-1单调增,3/(x-1)单调减,2 + 3/(x-1)单调减
(二)
令1<x1<x2
f(x2) - f(x1)
= { 2 + 3/(x2-1) } - { 2 + 3/(x1-1) }
= 3/(x2-1)} - 3/(x1-1)
= 3{(x1-1)-(x2-1)}/{(x1-1)(x2-1)}
= 3(x1-x2) /{(x1-1)(x2-1)}
∵1<x1<x2
∴x1-x2<0,x1-1>0,x2-2>0
∴f(x2) - f(x1) = 3(x1-x2) /{(x1-1)(x2-1)}<0
∴f(x2) < f(x1),得证
(三)
f(x) = (2x+1)/(x-1) = {2(x-1)+3}/(x-1) = 2 + 3/(x-1)
f'(x) = -3/(x-1)^2<0
∴f(x)在(1,正无穷)上为单调减
(一)
f(x) = (2x+1)/(x-1) = {2(x-1)+3}/(x-1) = 2 + 3/(x-1),x≠1
在(1,正无穷,)x-1单调增,3/(x-1)单调减,2 + 3/(x-1)单调减
(二)
令1<x1<x2
f(x2) - f(x1)
= { 2 + 3/(x2-1) } - { 2 + 3/(x1-1) }
= 3/(x2-1)} - 3/(x1-1)
= 3{(x1-1)-(x2-1)}/{(x1-1)(x2-1)}
= 3(x1-x2) /{(x1-1)(x2-1)}
∵1<x1<x2
∴x1-x2<0,x1-1>0,x2-2>0
∴f(x2) - f(x1) = 3(x1-x2) /{(x1-1)(x2-1)}<0
∴f(x2) < f(x1),得证
(三)
f(x) = (2x+1)/(x-1) = {2(x-1)+3}/(x-1) = 2 + 3/(x-1)
f'(x) = -3/(x-1)^2<0
∴f(x)在(1,正无穷)上为单调减
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
网易云信
2023-12-06 广告
2023-12-06 广告
UIkit是一套轻量级、模块化且易于使用的开源UI组件库,由YOOtheme团队开发。它提供了丰富的界面元素,包括按钮、表单、表格、对话框、滑块、下拉菜单、选项卡等等,适用于各种类型的网站和应用程序。UIkit还支持响应式设计,可以根据不同...
点击进入详情页
本回答由网易云信提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询