证明方程x*2^x=1至少有一个小于1的正根

 我来答
新科技17
2022-07-28 · TA获得超过5894个赞
知道小有建树答主
回答量:355
采纳率:100%
帮助的人:74.4万
展开全部
证明:
设f(x)=x*2^x-1
因为:2^x>0在R上恒成立
所以:x<0时,f(x)=x*2^x-1<1恒成立
所以:f(x)在x<0时不存在零点
x>0时,x和2^x都是增函数
所以:f(x)=x*2^x-1是增函数
f(0)=0-1=-1<0
f(1)=2-1=1>0
所以:f(x)=x*2^x-1在(0,1)上存在唯一的一个零点
所以:x*2^x=1至少存在一个小于1的正根
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式