考研高数-利用单调有界准则证明证明数列极限存在?
1个回答
展开全部
1.a《2
X1=√(2+a)《2
X(n+1)=√(2+Xn)《√(2+2)=2 Xn有上界2
X2=√(2+X1)=√(2+√(2+a))》√(2+a)=X1
X(n+1)=√(2+Xn)》√(2+Xn-1)=Xn Xn单增
2.a>2
X1=√(2+a)>2
X(n+1)=√(2+Xn)>√(2+2)=2 Xn有下界2
X2=√(2+X1)=√(2+√(2+a)),1,你确定题目没打错,0,当0 当a=2时,{xn} 恒为2.极限存在。
当a>2时,{xn}单调递减,但xn>=2.单调有界所以极限存在。
其极限均为 2.下面求之:
根据xn+1=(2+xn)^0.5,得xn+1^2=2+xn,当n趋向无穷时,因为{xn}极限存在,所以xn+1=xn
所以可变为x^2-x-2=...,0,考研高数-利用单调有界准则证明证明数列极限存在
设a>0,X1=根号(2+a),Xn+1=根号(2+Xm) 证明:lim n->无穷 Xn存在,并求其值
X1=√(2+a)《2
X(n+1)=√(2+Xn)《√(2+2)=2 Xn有上界2
X2=√(2+X1)=√(2+√(2+a))》√(2+a)=X1
X(n+1)=√(2+Xn)》√(2+Xn-1)=Xn Xn单增
2.a>2
X1=√(2+a)>2
X(n+1)=√(2+Xn)>√(2+2)=2 Xn有下界2
X2=√(2+X1)=√(2+√(2+a)),1,你确定题目没打错,0,当0 当a=2时,{xn} 恒为2.极限存在。
当a>2时,{xn}单调递减,但xn>=2.单调有界所以极限存在。
其极限均为 2.下面求之:
根据xn+1=(2+xn)^0.5,得xn+1^2=2+xn,当n趋向无穷时,因为{xn}极限存在,所以xn+1=xn
所以可变为x^2-x-2=...,0,考研高数-利用单调有界准则证明证明数列极限存在
设a>0,X1=根号(2+a),Xn+1=根号(2+Xm) 证明:lim n->无穷 Xn存在,并求其值
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询