数学期望怎么求?
展开全部
记D(x)为该数据的方差,E(x)为期望,则D(x)=E(x^2)-[E(x)]^2,这样就可以把E(X²)求出来,或者直接用定义法求也可以。数学期望是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。
期望值是基础概率学的升级版,是所有管理决策的过程中,尤其是在金融领域是最实用的统计工具。某个事件(最初用来描述买彩票)的期望值即收益,实际上就是所有不同结果的和,其中每个结果都是由各自的概率和收益相乘而来。
扩展资料
离散型随机变量数学期望的内涵:
在概率论和统计学中,离散型随机变量的一切可能的取值xi与对应的概率P(=xi)之积的和称为数学期望(设级数绝对收敛),记为E(x)。数学期望又称期望或均值,其含义实际上是随机变量的平均值,是随机变量最基本的数学特征之一。
但期望的严格定义是∑xi*pi绝对收敛,注意是绝对,也就是说这和平常理解的平均值是有区别的。一个随机变量可以有平均值或中位数,但其期望不一定存在。
参考资料来源:
展开全部
数学期望是试验中每次可能结果的概率乘以其结果的总和。计算公式:
1、离散型:离散型随机变量X的取值为X1、X2、X3……Xn,p(X1)、p(X2)、p(X3)……p(Xn)、为X对应取值的概率,可理解为数据X1、X2、X3……Xn出现的频率高f(Xi),则:2、连续型:
设连续性随机变量X的概率密度函数为f(x),若积分绝对收敛,则称积分的值为随机变量的数学期望,记为E(X)。即扩展资料例题:
在10件产品中,有3件一等品,4件二等品,3件三等品。从这10件产品中任取3件, 求:(1)取出的3件产品中一等品件数x的分布列和数学期望;(2)取出的3件产品中一等品件数多于二等品件数的概率。解:x的数学期望E(x)=0*7/24+1*21/40+2*7/40+3*1/120=9/10
参考资料来源:
1、离散型:离散型随机变量X的取值为X1、X2、X3……Xn,p(X1)、p(X2)、p(X3)……p(Xn)、为X对应取值的概率,可理解为数据X1、X2、X3……Xn出现的频率高f(Xi),则:2、连续型:
设连续性随机变量X的概率密度函数为f(x),若积分绝对收敛,则称积分的值为随机变量的数学期望,记为E(X)。即扩展资料例题:
在10件产品中,有3件一等品,4件二等品,3件三等品。从这10件产品中任取3件, 求:(1)取出的3件产品中一等品件数x的分布列和数学期望;(2)取出的3件产品中一等品件数多于二等品件数的概率。解:x的数学期望E(x)=0*7/24+1*21/40+2*7/40+3*1/120=9/10
参考资料来源:
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2023-03-23
展开全部
公式主要为:、。共两个。在概率论和统计学中,数学期望(mean)(或均。值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,它反映随机变量平均取值的大小。设连续性随机变量X的概率密度函数为f(x),若积分绝对收敛,则称积分的值 为随机变量的数学期望,记为E(X):离散型随机变量X的取值为 , 为X对应取值的概率,可理解为数据 出现的频率 ,则:扩展资料:性质设C为一个常数,X和Y是两个随机变量。以下是数学期望的重要性质:1. 2. 3. 4. 当X和Y相互独立时,有 性质3和性质4可以推到到任意有限个相互独立的随机变量之和或之积的情况。参考资料:
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
求解的方法是:X是离散型随机变量,其全部可能取值是a1,a2,a3等到an取这些值的相应概率是p1,p2,p3等到pn,则其数学期望E(X)=(a1)*(p1)+(a2)*(p2)+…+(an)*(pn)。在概率论和统计学中,数学期望是试验中每次可能结果的概率乘以其结果的总和。也是最基本的数学特征之一。它反映随机变量平均取值的大小。需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。规定,随着重复次数接近无穷大,数值的几乎肯定地收敛于期望值。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |