圆的切线方程?
2022-09-28 · 百度认证:北京惠企网络技术有限公司官方账号
圆的切线方程:
(x₁-a)(x-a)+(y₁-b)(y-b)=r²。(a,b)是圆上的一点。切线方程是研究切线以及切线的斜率方程,涉及几何、代数、物理向量、量子力学等内容。是关于几何图形的切线坐标向量关系的研究。分析方法有向量法和解析法。
圆的标准方程中(x-a)²+(y-b)²=r²中,有三个参数a、b、r,只要求出a、b、r,这时圆的方程就被确定,因此确定圆方程,须三个独立条件,其中圆心坐标是圆的定位条件,半径是圆的定形条件。
扩展资料
一、向量法:
设圆上一点A为(x0,y0),则该点与圆心O的向量OA(x0-a,y0-b),因为过该点的切线与该方向半径垂直,则有切线方向上的单位向量与向量OA的点积为0。
设直线上任意点B为(x,y),则对于直线方向上的向量AB(x-x0,y-y0),有向量AB与OA的点积,AB●OA=(x-x0)(x0-a)+(y0-b)(y-y0)=(x-a+a-x0)(x0-a)+(y0-b)(y-b+b-y0)=(x-a)(x0-a)+(y-b)(y0-b)-(x0-a)^2-(y0-b)^2=0,故有(x-a)(x0-a)+(y-b)(y0-b)=(x0-a)^2+(y0-b)^2=r^2。
二、解析法:
设圆上一点A为(x0,y0),则有:(x0-a)^2+(y0-b)^2=r^2,对隐函数求导,则有:2(x0-a)dx+2(y0-b)dy=0,dy/dx=(a-x0)/(y0-b)=k,(隐函数求导法亦可证明椭圆的切线方程,方法相同),或直接k1=(y0-b)/(x0-a); k*k1=-1;(k1为与切线垂直的半径斜率。)
2024-11-14 广告