求微分方程x^3*(dy/dx)=x^2*y-1/2*y^3满足初始条件y|(x=1)=1的特解

 我来答
科创17
2022-08-03 · TA获得超过5873个赞
知道小有建树答主
回答量:2846
采纳率:100%
帮助的人:171万
展开全部
由x^3*(dy/dx)=x^2*y-1/2*y^3可得:(dy/dx)=y/x-1/2*(y/x)^3 ……①
设y/x=U(x),则y=u*x
那么dy/dx=du/dx *x +u
此时①式即:du/dx *x +u=u-(1/2)* u^3
所以:x*du/dx=-(1/2)* u^3
当u≠0有dx/x= -2* du/{ u^3}
的lnx +c=1/[u^2] =(x/y)^2
带入y|(x=1)=1得c=1
带入c整理一下答案就出来了.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式