求微分方程x^3*(dy/dx)=x^2*y-1/2*y^3满足初始条件y|(x=1)=1的特解
1个回答
展开全部
由x^3*(dy/dx)=x^2*y-1/2*y^3可得:(dy/dx)=y/x-1/2*(y/x)^3 ……①
设y/x=U(x),则y=u*x
那么dy/dx=du/dx *x +u
此时①式即:du/dx *x +u=u-(1/2)* u^3
所以:x*du/dx=-(1/2)* u^3
当u≠0有dx/x= -2* du/{ u^3}
的lnx +c=1/[u^2] =(x/y)^2
带入y|(x=1)=1得c=1
带入c整理一下答案就出来了.
设y/x=U(x),则y=u*x
那么dy/dx=du/dx *x +u
此时①式即:du/dx *x +u=u-(1/2)* u^3
所以:x*du/dx=-(1/2)* u^3
当u≠0有dx/x= -2* du/{ u^3}
的lnx +c=1/[u^2] =(x/y)^2
带入y|(x=1)=1得c=1
带入c整理一下答案就出来了.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询