已知tanθ=1,求sinθcosθ\sin^2θ — 2cos^2θ,和 1\sin^2θ — sinθcosθ —?
展开全部
tanθ=1 --> θ=k*pi+pi/4,2θ=2k*pi+pi/2
1.sinθ * cosθ=sin(2θ)/2 = 1/2; sin^2θ = ( 1 - cos2θ ) /2 = 1/2; cos^2θ = ( 1 + cos2θ)/2 = 1/2
所以sinθcosθsin^2θ — 2cos^2θ=1/2 / ( 1/2 - 2 * 1/2) = -1
2.sinθ * cosθ=sin(2θ)/2 = 1/2; sin^2θ = ( 1 - cos2θ ) /2 = 1/2; cos^2θ = ( 1 + cos2θ)/2 = 1/2
所以分母=1/2 - 1/2 - 1/2; 分子为1,最后结果为-2,5,已知tanθ=1,求sinθcosθsin^2θ — 2cos^2θ,和 1sin^2θ — sinθcosθ — cos^2θ
1.sinθ * cosθ=sin(2θ)/2 = 1/2; sin^2θ = ( 1 - cos2θ ) /2 = 1/2; cos^2θ = ( 1 + cos2θ)/2 = 1/2
所以sinθcosθsin^2θ — 2cos^2θ=1/2 / ( 1/2 - 2 * 1/2) = -1
2.sinθ * cosθ=sin(2θ)/2 = 1/2; sin^2θ = ( 1 - cos2θ ) /2 = 1/2; cos^2θ = ( 1 + cos2θ)/2 = 1/2
所以分母=1/2 - 1/2 - 1/2; 分子为1,最后结果为-2,5,已知tanθ=1,求sinθcosθsin^2θ — 2cos^2θ,和 1sin^2θ — sinθcosθ — cos^2θ
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询