因式分解的方法?

 我来答
清宁时光17
2022-10-17 · TA获得超过1.4万个赞
知道大有可为答主
回答量:7246
采纳率:100%
帮助的人:42.6万
展开全部
问题一:因式分解的方法 所谓主元法分解因式就是在分解含多个字母的代数式时,选取其中一个字母为主元(未知数),将其它字母看成是常数,把代数式整理成关于主元的降幂排列(或升幂排列)的多项式,再尝试用公式法、配方法、分组法等分解因式的方法进行分解!
例如:
x^4+y^4+z^4-2x^2y^2-2y^2z^2-2z^2x^2=x^4-2(y^2+z^2)x+y^4+z^4-2y^2z^2
=x^4-2(y^2+z^2)x+y^4+z^4+2y^2z^2-4y^2z^2
=x^4-2(y^2+z^2)x^2+(y^2+z^2)^2-4y^2z^2
=[x^2-(y^2+z^2)]^2-(2yz)^2
=[x^2-(y^2+z^2)+2yz][x^2-(y^2+z^2)-2yz]
=[x^2-(y-z)^2][x^2-(y+z)^2]
=[x+(y-z)][x-(y-z)][x+(y+z)][x-(y+z)]
=(x+y-z)(x-y+z)(x+y+z)(x-y-z)
主元法 所谓主元法分解因式就是在分解含多个字母的代数式时,选取其中一个字母为主元(未知数),将其它字母看成是常数,把代数式整理成关于主元的降幂排列(或升幂排列)的多项式,再尝试用公式法、配方法、分组法等分解因式的方法进行分解。

较为简单的例用
1.因式分解 (ab+bc+ca)(a+b+c)-abc.
分析:如果懂得因式定理的话,解此题自然会流畅很多,但是用主元法的话,也十分简便。
拆开原式,并按a的降幂排列得:
(b+c)a^2+(b^2+c^2+2bc)^2+b(bc+c^2)
=(a+c)(b+c)(a+b)------------------------------【十字相乘法】
十字相乘图为
x--------------- b
(b+c)x -----bc+c^2
对于低次因式分解,主元法与十字相乘法的配合是卓有成效的。
2.因式分解16y+2x^2(y+1)^2+(y-1)^2*x^4
分析:本题尚且属于简单例用,只是稍加难度,以y为主元会使原式极其烦琐,而以x为主元的话,原式的难度就大大降低了。
原式=(y-1)^2x^2+2(y+1)^2x^2+16y---------------------【主元法】
=(x^2y^2-2x^2y+x^2+8y)(x+2)---------------------【十字相乘法】
十字相乘图为
(y-1)^2x ----8y
x ------------2
如果能很好地利用主元法,低次因式分解就不会太难了。

高难度的主元法例用
1.因式分解2x^3+6y^3+15z^3-9x^2y+7xy^2-x^2z-16xz^2-37y^2z+32yz^2+13xyz
分析:本题属于高难度因式分解中的中档题,如果不假思索就上别的方法,就会处处碰壁。
1.原式=2x^3-(9y+z)x^2+(13yz+7y^2-16z^2)x+6y^3+15z^3-37y^2z+32yz---------------【主元法】
这样本题的条理就清晰多了,现抛开x,只看6y^3+15z^3-37y^2z+32yz,
这是一个2元三次因式分解,难度简单多了。
原式=6y^3-9zy^2-(28y^2z-32yz^2-15z^3)-------------------------【拆项法】
=(2y-3z)(y-5z)(3y+z)
再代入原题目,接下来的工作就简单了。
由于......>>

问题二:什么叫因式分解?分解因式的方法有哪些? 定义:
把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个多项式因式分解(也叫作分解因式)。
方法:1.提公因式法。
2.公式法。
3.分组分解法。
4.凑数法。[x^2+(a+b)x+ab=(x+a)(x+b)]
5.组合分解法。
6.十字相乘法。
7.双十字相乘法。
8.配方法。
9.拆项补项法。
10.换元法。
11.长除法。
12.求根法。
13.图象法。
14.主元法。
15.待定系数法。
16.特殊值法。
17.因式定理法。
希望帮到你 望采纳 谢谢 加油

问题三:因式分解的方法 所谓主元法分解因式就是在分解含多个字母的代数式时,选取其中一个字母为主元(未知数),将其它字母看成是常数,把代数式整理成关于主元的降幂排列(或升幂排列)的多项式,再尝试用公式法、配方法、分组法等分解因式的方法进行分解!
例如:
x^4+y^4+z^4-2x^2y^2-2y^2z^2-2z^2x^2=x^4-2(y^2+z^2)x+y^4+z^4-2y^2z^2
=x^4-2(y^2+z^2)x+y^4+z^4+2y^2z^2-4y^2z^2
=x^4-2(y^2+z^2)x^2+(y^2+z^2)^2-4y^2z^2
=[x^2-(y^2+z^2)]^2-(2yz)^2
=[x^2-(y^2+z^2)+2yz][x^2-(y^2+z^2)-2yz]
=[x^2-(y-z)^2][x^2-(y+z)^2]
=[x+(y-z)][x-(y-z)][x+(y+z)][x-(y+z)]
=(x+y-z)(x-y+z)(x+y+z)(x-y-z)
主元法 所谓主元法分解因式就是在分解含多个字母的代数式时,选取其中一个字母为主元(未知数),将其它字母看成是常数,把代数式整理成关于主元的降幂排列(或升幂排列)的多项式,再尝试用公式法、配方法、分组法等分解因式的方法进行分解。

较为简单的例用
1.因式分解 (ab+bc+ca)(a+b+c)-abc.
分析:如果懂得因式定理的话,解此题自然会流畅很多,但是用主元法的话,也十分简便。
拆开原式,并按a的降幂排列得:
(b+c)a^2+(b^2+c^2+2bc)^2+b(bc+c^2)
=(a+c)(b+c)(a+b)------------------------------【十字相乘法】
十字相乘图为
x--------------- b
(b+c)x -----bc+c^2
对于低次因式分解,主元法与十字相乘法的配合是卓有成效的。
2.因式分解16y+2x^2(y+1)^2+(y-1)^2*x^4
分析:本题尚且属于简单例用,只是稍加难度,以y为主元会使原式极其烦琐,而以x为主元的话,原式的难度就大大降低了。
原式=(y-1)^2x^2+2(y+1)^2x^2+16y---------------------【主元法】
=(x^2y^2-2x^2y+x^2+8y)(x+2)---------------------【十字相乘法】
十字相乘图为
(y-1)^2x ----8y
x ------------2
如果能很好地利用主元法,低次因式分解就不会太难了。

高难度的主元法例用
1.因式分解2x^3+6y^3+15z^3-9x^2y+7xy^2-x^2z-16xz^2-37y^2z+32yz^2+13xyz
分析:本题属于高难度因式分解中的中档题,如果不假思索就上别的方法,就会处处碰壁。
1.原式=2x^3-(9y+z)x^2+(13yz+7y^2-16z^2)x+6y^3+15z^3-37y^2z+32yz---------------【主元法】
这样本题的条理就清晰多了,现抛开x,只看6y^3+15z^3-37y^2z+32yz,
这是一个2元三次因式分解,难度简单多了。
原式=6y^3-9zy^2-(28y^2z-32yz^2-15z^3)-------------------------【拆项法】
=(2y-3z)(y-5z)(3y+z)
再代入原题目,接下来的工作就简单了。
由于......>>

问题四:求因式分解的所有方法和技巧 因式分解
因式分解(factorization)
因式分解是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.而在竞赛上,又有拆项和添项法,待定系数法,双十字相乘法,轮换对称法等.
⑴提公因式法
①公因式:各项都含有的公共的因式叫做这个多项式各项的~.
②提公因式法:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.
am+bm+cm=m(a+b+c)
③具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的. 如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数是正的.
⑵运用公式法
①平方差公式:. a^2-b^2=(a+b)(a-b)
②完全平方公式: a^2±2ab+b^2=(a±b)^2
※能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.
③立方和公式:a^3+b^3= (a+b)(a^2-ab+b^2).
立方差公式:a^3-b^3= (a-b)(a^2+ab+b^2).
④完全立方公式: a^3±3a^2b+3ab^2±b^3=(a±b)^3
⑤a^n-b^n=(a-b)[a^(n-1)+a^(n-2)b+……+b^(n-2)a+b^(n-1)]
a^m+b^m=(a+b)[a^(m-1)-a^(m-2)b+……-b^(m-2)a+b^(m-1)](m为奇数)
⑶分组分解法
分组分解法:把一个多项式分组后,再进行分解因式的方法.
分组分解法必须有明确目的,即分组后,可以直接提公因式或运用公式.
⑷拆项、补项法
拆项、补项法:把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解;要注意,必须在与原多项式相等的原则进行变形.
⑸十字相乘法
①x^2+(p q)x+pq型的式子的因式分解
这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分解: x^2+(p q)x+pq=(x+p)(x+q)
②kx^2+mx+n型的式子的因式分解
如果能够分解成k=ac,n=bd,且有ad+bc=m 时,那么
kx^2+mx+n=(ax b)(cx d)
a \-----/b ac=k bd=n
c /-----\d ad+bc=m
※ 多项式因式分解的一般步骤:
①如果多项式的各项有公因式,那么先提公因式;
②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;
③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解;
④分解因式,必须进行到每一个多项式因式都不能再分解为止.
(6)应用因式定理:如果f(a)=0,则f(x)必含有因式(x-a)。如f(x)=x^2+5x+6,f(-2)=0,则可确定(x+2)是x^......>>

问题五:因式分解十字交叉法的方法 1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
2、十字相乘法的用处:(1)用十字相乘法来分解因式。(2)用十字相乘法来解一元二次方程。
3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。
例如:
例1把m2+4m-12分解因式
分析:本题中常数项-12弗以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题
解:因为 1 -2
1 6
所以m2+4m-12=(m-2)(m+6)
例2把5x2+6x-8分解因式
分析:本题中的5可分为1×5,-8可分为-1×8,-2×4,-4×2,-8×1。当二次项系数分为1×5,常数项分为-4×2时,才符合本题
解: 因为 1 2
5 -4
所以5x2+6x-8=(x+2)(5x-4)
例3解方程x2-8x+15=0
分析:把x2-8x+15看成关于x的一个二次三项式,则15可分成1×15,3×5。
解: 因为 1 -3
1 -5
所以原方程可变形(x-3)(x-5)=0
所以x1=3 x2=5
例4、解方程 6x2-5x-25=0
分析:把6x2-5x-25看成一个关于x的二次三项式,则6可以分为1×6,2×3,-25可以分成-1×25,-5×5,-25×1。
解: 因为 2 -5
3 5
所以 原方程可变形成(2x-5)(3x+5)=0
所以 x1=5/2 x2=-5/3
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式