对任意的质数p,求证:存在无穷多个正整数n使得p能整除(2^n-n)

 我来答
新科技17
2022-08-29 · TA获得超过5913个赞
知道小有建树答主
回答量:355
采纳率:100%
帮助的人:75.6万
展开全部
由费马小定理可以得到p | 2^(p-1) - 1所以p | 2^(p-1) - 1-p = 2^(p-1) - (p+1)所以设n = k(p^2-1)那么2^n = [2^(p^2-1)]^k = [2^(p-1)]^(k(p+1)) = (-1)^(k(p+1)) = 1 (mod p)所2^n - n = 1 - k(p^2-1) = 1 + k (mo...
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式