对边相等的四边形是平行四边形吗
对边相等的四边形不一定是平行四边形。
正确说法是:两组对边分别相等的四边形是平行四边形。
解析:根据平行四边形的性质,平行四边形两组对边分别平行,两组对边分别相等;即可得出两组对边分别相等的四边形是平行四边形。
举例:设在四边形ABCD中,AB=CD,AD=BC,求证四边形ABCD是平行四边形。
证明:
连接AC。
∵在△ABC和△CDA中
AB=CD(已知)
BC=AD(已知)
AC=CA(公共边)
∴△ABC≌△CDA(SSS)
∴∠ACB=∠CAD,∠BAC=∠DCA(全等三角形对应角相等)
∴AD//BC,AB//CD(内错角相等,两直线平行)
扩展资料:
平行四边形的性质:
(1)夹在两条平行线间的平行的高相等。(简述为“平行线间的高距离处处相等”)
(2)如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分。
(3)连接任意四边形各边的中点所得图形是平行四边形。
(4)平行四边形的面积等于底和高的积。(可视为矩形。)
(5)过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。
(6)平行四边形是中心对称图形,对称中心是两对角线的交点。
(7)平行四边形不是轴对称图形,但平行四边形是中心对称图形。矩形和菱形是轴对称图形。注:正方形,矩形以及菱形也是一种特殊的平行四边形,三者具有平行四边形的性质。