设随机变量X服从区间(0,2)上的均匀分布,试求随机变量Y=X2的概率密度。(X2为X的平方
1个回答
展开全部
解题过程如下(因有特殊专用符号编辑不了,故只能截图):
扩展资料
求概率密度的方法:
设随机变量X具有概率密度fX(x),-∞<x<∞,由设函数g(x)处处可导且恒有g'(x)>0(或恒有g'(x)<0),则Y=g(X)是连续型随机变量。
对于随机变量X的分布函数F(x),如果存在非负可积函数f(x),使得对任意实数x,则X为连续型随机变量,称f(x)为X的概率密度函数。
由于随机变量X的取值 只取决于概率密度函数的积分,所以概率密度函数在个别点上的取值并不会影响随机变量的表现。更准确来说,如果一个函数和X的概率密度函数取值不同的点只有有限个、可数无限个或者相对于整个实数轴来说测度为0(是一个零测集),那么这个函数也可以是X的概率密度函数。
连续型的随机变量取值在任意一点的概率都是0。作为推论,连续型随机变量在区间上取值的概率与这个区间是开区间还是闭区间无关。要注意的是,概率P{x=a}=0,但{X=a}并不是不可能事件。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询