设X~N(1,2),Y服从参数为3的泊松分布,且X与Y独立,求D(XY)
1个回答
展开全部
X~N(1,2)则E(X)=1,Y服从参数为3的泊松分布,则E(Y)=3;
E(Y^2)=3^2+3=12; E(X^2)=1;
D(xy)=E[(xy)^2]-E^2(xy)=E(x^2 y^2)-E^2(X)E^2(Y)
=E(X^2)E(Y^2)-[E(X)E(Y)]^2
=1*12-(1*3)^2
=3
你看见的公式不知道是不是你写错了D(xy)=E[(xy)]^2 -E^2(xy)=E(x^2 y^2)-E^2(X)E^2(Y);第一个E的平方应该是在中括号里的
E(Y^2)=3^2+3=12; E(X^2)=1;
D(xy)=E[(xy)^2]-E^2(xy)=E(x^2 y^2)-E^2(X)E^2(Y)
=E(X^2)E(Y^2)-[E(X)E(Y)]^2
=1*12-(1*3)^2
=3
你看见的公式不知道是不是你写错了D(xy)=E[(xy)]^2 -E^2(xy)=E(x^2 y^2)-E^2(X)E^2(Y);第一个E的平方应该是在中括号里的
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询