什么是线性微分方程?

 我来答
林清他爹
2023-01-05 · TA获得超过3172个赞
知道小有建树答主
回答量:266
采纳率:100%
帮助的人:14.7万
展开全部
以二阶微分方程为例(高阶的以此类推):经过化简,可以变形为这种形式的称为线性微分方程:P(x)y"+Q(x)y'+R(x)y=S(x) (其中,P(x),Q(x),R(x),S(x)都是已知的x的函数式)
无论如何怎么化简,方程中都带有y或者y的导数的非一次方的微分方程就是非线性微分方程。
例如y'y=y²,虽然y不是一次方,但是我通过等价变形可以变成y(y'-y)=0,即y=0或者y'-y=0,因为y和y'都是一次方,因此他们是线性微分方程。而他们的系数都是常数,所以可以称之为常系数微分方程。
再如(sinx)y'-y=0,因为y'和y的次数都是1(含有x的函数项不算),所以是线性微分方程。而y'的系数是sinx,因此是变系数线性常微分方程。
再如y'y=1,无论如何化简(例如把y除过去),都不能变成y'和y次数都是1的形式,因此该方程为非线性微分方程。
再加一句:线性微分方程都有解析解,就是可以写成函数解析式y=f(x)的形式。但是非线性微分方程就很难说了。一般来说,部分一阶非线性微分方程有解析解。但是二阶或二阶以上的非线性微分方程很难有解析解。
富港检测技术(东莞)有限公司_
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式