向量积分配律的证明思路
三维向量外积(即矢积、叉积)可以用几何方法证明;也可以借用外积的反对称性、内积的分配律和混合积性质,以代数方法证明。
下面把向量外积定义为:
a × b = |a|·|b|·Sin<a, b>.
分配律的几何证明方法很繁琐,大意是用作图的方法验证。有兴趣的话请自己参阅参考文献中的证明。
下面给出代数方法。我们假定已经知道了:
1)外积的反对称性:
a × b = - b × a.
这由外积的定义是显然的。
2)内积(即数积、点积)的分配律:
a·(b + c) = a·b + a·c,
(a + b)·c = a·c + b·c.
这由内积的定义a·b = |a|·|b|·Cos<a, b>,用投影的方法不难得到证明。
测度论:
测度论是研究一般集合上的测度和积分的理论。它是勒贝格测度和勒贝格积分理论的进一步抽象和发展,又称为抽象测度论或抽象积分论,是现代分析数学中重要工具之一。 测度理论是实变函数论的基础。
若尔当(Jordan,M.E.C.)于1892年在R中发展了佩亚诺可测集的概念。原来定义外测度时,要用多边形去覆盖点集,他规范为用有限个开区间去覆盖,其余不变。若尔当的改进使测度概念前进了一大步,蕴涵了勒贝格测度的萌芽,但仍有明显的缺点。
主要是它仍只具有有限可加性,从而导致有些简单的点集也不可测。例如,令A=[0,1]∩Q,则A的若尔当内测度为0,而外测度为1,因而A在若尔当意义下不可测。总之,若尔当测度只适合于黎曼积分的需要。波莱尔(Borel,(F.-É.-J.-)É.)于1898年,先由开集经过可列并与余的运算导致一类集,即所谓波莱尔集类。