矩阵伴随矩阵的秩是什么?
如果A是满秩,那么其伴随矩阵也是满秩;
如果A(n阶矩阵)的秩是n-1,那么伴随矩阵的秩是1;
如果A的秩是小于n-1的话,伴随矩阵的秩是0。
矩阵满秩,R(A)=n,那么R(A-1)=n,矩阵的逆的秩与原矩阵秩相等,而且初等变换不改变矩阵的秩,A*=|A|A-1,R(A*)=n
R(A)=n-1,行列式|A|=0,但是矩阵A中存在n-1阶子式不为0,对此有:
AA*=|A|E=0,从而r(A)+r(A*)小于或等于n,也就是r(A*)小于或等于1,又因为A中存在n-1阶子式不为0,所以Aij≠0,得r(A*)大于或等于1,所以R(A*)=1
R(A)<n-1,那么A的所有n-1阶子式全为零,A*即为零(规定:零矩阵的秩为零),故R(A*)=0
扩展资料
根据伴随矩阵的元素的定义:每个元素等于原矩阵去掉该元素所在的行与列后得到的行列式的值乘以(-1)的i+j次方的代数余子式。有:
1.当r(A)=n时,由于公式r(AB)<=r(A),r(AB)<=r(B),并且r(AA*)=r(I)=n,则,伴随的秩为n;
2.当r(A)=n-1时,r(AA*)=|A|I=0,加上公式r(A)+r(B)<=n-r(AB),带入得到,r(A*)=1;
3.当r(A)<n-1时,由上述定义得到伴随矩阵其每个元素都为零,所以秩为零。