<与>有什么区别?
展开全部
“<”表示的是小于,是小于号,“>”表示的是大于,是大于号。
小于号是数学中不等式运算符号的一种,是英国数学家哈利奥特在自己的《使用分析学》一书中首先使用了“<”和“>”符号,“大于”可以用数学符号表示为>,当一个数值比另一个数值大时使用大于号(>)来表示它们之间的关系。
关系符号:
如“=”是等号,“≈”是近似符号(即约等于),“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“≮”,即不小于),“≤”是小于或等于符号(也可写作“≯”,即不大于)。
“→”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是正比例符号(表示反比例时可以利用倒数关系),“∈”是属于符号,“⊆”是包含于符号,“⊇”是包含符号。
“|”表示“能整除”(例如a|b表示“a能整除b”,而||b表示r是a恰能整除b的最大幂次),x,y等任何字母都可以代表未知数。
小于号是数学中不等式运算符号的一种,是英国数学家哈利奥特在自己的《使用分析学》一书中首先使用了“<”和“>”符号,“大于”可以用数学符号表示为>,当一个数值比另一个数值大时使用大于号(>)来表示它们之间的关系。
关系符号:
如“=”是等号,“≈”是近似符号(即约等于),“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“≮”,即不小于),“≤”是小于或等于符号(也可写作“≯”,即不大于)。
“→”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是正比例符号(表示反比例时可以利用倒数关系),“∈”是属于符号,“⊆”是包含于符号,“⊇”是包含符号。
“|”表示“能整除”(例如a|b表示“a能整除b”,而||b表示r是a恰能整除b的最大幂次),x,y等任何字母都可以代表未知数。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询