如何理解r(A'A)= r(A)?

 我来答
一笑而过jLNJ1
高粉答主

2023-08-01 · 每个回答都超有意思的
知道大有可为答主
回答量:1.4万
采纳率:77%
帮助的人:7769万
展开全部
用A'表示A的转置,要证明r(A'A)=r(A),只需证明方程组AX=0和A'AX=0同解。如果AX=0,两边分别左乘A',得A'AX=0,这说明方程组AX=0的解都是方程组A'AX=0的解;另一方面,如果A'AX=0,两边分别左乘X',得X'A'AX=0,即(AX)'AX=0,令Y=AX,则Y'Y=0,注意Y=AX为n维列向量,因此可设Y=(y1,y2,,,yn)',则Y'Y=y1^2+...+yn^2=0,因此y1=...yn=0,即Y=AX=0,这说明方程组A'AX=0的解都是方程组AX=0的解,综上我们证明了AX=0和A'AX=0同解,因此r(A'A)=r(A)。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式