已知:a^4+3a^2=b^2-3b=1,且a^2b不等于1,求(a^6b^3+1)/b^3的值。
1个回答
展开全部
由题意,a^4+3a^2-1=0--------1式
b^2-3b-1=0-------2式
显然a、b均不为0 故2式/-b^2,得
(1/b)^2+3/b-1=0
因为a^2×b≠1
所以1/b≠a^2
所以1/b、a^2可以看作是方程X^2+3X-1=0的两实数根。
所以1/b*a^2=a^2/b=-1,a^2+1/b=-3
所以原式=a^6+1/b^3
=(a^2+1/b)^3-3a^4/b-3a^2/b^2
=-27+3a^2+3/b
=-27+3(a^2+1/b)
=-27-9
=-36
b^2-3b-1=0-------2式
显然a、b均不为0 故2式/-b^2,得
(1/b)^2+3/b-1=0
因为a^2×b≠1
所以1/b≠a^2
所以1/b、a^2可以看作是方程X^2+3X-1=0的两实数根。
所以1/b*a^2=a^2/b=-1,a^2+1/b=-3
所以原式=a^6+1/b^3
=(a^2+1/b)^3-3a^4/b-3a^2/b^2
=-27+3a^2+3/b
=-27+3(a^2+1/b)
=-27-9
=-36
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询