如图,四边形ABCD中,AD=BC,E、F、G分别是AB、CD、AC的中点,若∠DAC=20°,∠ACB=60°,求∠FEG的度数
2个回答
展开全部
解:
∵E、F、G分别是AB、CD、AC的中点
∴GE、FG分别是△ACB和△CDA的中位线
∴GE‖BC,GE=1\2BC
FG‖DA, FG=1\2DA
又∵AD=BC,∴GE=FG
∴∠FEG=∠GFE
∵∠AGE=∠ACB=60°(平行)∴∠EGC=120°
又∵∠FGC=∠DAC=20°(平行)∴∠FGE=∠EGC+∠FGC=140°
∴∠FEG=1\2∠FGE=70°
∵E、F、G分别是AB、CD、AC的中点
∴GE、FG分别是△ACB和△CDA的中位线
∴GE‖BC,GE=1\2BC
FG‖DA, FG=1\2DA
又∵AD=BC,∴GE=FG
∴∠FEG=∠GFE
∵∠AGE=∠ACB=60°(平行)∴∠EGC=120°
又∵∠FGC=∠DAC=20°(平行)∴∠FGE=∠EGC+∠FGC=140°
∴∠FEG=1\2∠FGE=70°
参考资料: 晕,打死我咯,全手动的,希望能加点分
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询