X²/12+Y²/3=1的焦点为F1,F2,点P在椭圆上,如果线段PF1的中点在Y轴上,那
X²;/12+Y²;/3=1的焦点为F1,F2,点P在椭圆上,如果线段PF1的中点在Y轴上,那么,|PF1|是|PF2|的几倍?...
X²;/12+Y²;/3=1的焦点为F1,F2,点P在椭圆上,如果线段PF1的中点在Y轴上,那么,|PF1|是|PF2|的几倍?
展开
2个回答
展开全部
解析方法:
设椭圆左右焦点分别为F1,F2,连接PF1和PF2,设PF1的中点为M
∵F1F2的中点为原点O
∴直线MO为为三角形PF1F2的中位线
∵MO⊥F1F2 (y轴垂直于x轴)
∴PF2⊥F1F2 (中位线与底线平行)
∴P的x坐标为F2的x坐标
在椭圆X²/12+Y²/3=1中
∵a^2 = 12 (a=2√3)
b^2 = 3 (b=√3)
∴c^2 = a^2 -b^2 = 9
∴c = 3
∴F1的坐标为(-3,0)F2的坐标为(3,0)
将x=3带入椭圆方程可求得P点y坐标绝对值为:
|y| = √[3(1-x^2/12)]=√3/2
∴|PF2|=√3/2
由椭圆的第2定义有
|(|PF1|+|PF2|)|=2a
∴|PF1|=2a+|PF1|=2*2√3-√3/2=7√3/2
∴|PF1|/|PF2|=7:1
即7倍
设椭圆左右焦点分别为F1,F2,连接PF1和PF2,设PF1的中点为M
∵F1F2的中点为原点O
∴直线MO为为三角形PF1F2的中位线
∵MO⊥F1F2 (y轴垂直于x轴)
∴PF2⊥F1F2 (中位线与底线平行)
∴P的x坐标为F2的x坐标
在椭圆X²/12+Y²/3=1中
∵a^2 = 12 (a=2√3)
b^2 = 3 (b=√3)
∴c^2 = a^2 -b^2 = 9
∴c = 3
∴F1的坐标为(-3,0)F2的坐标为(3,0)
将x=3带入椭圆方程可求得P点y坐标绝对值为:
|y| = √[3(1-x^2/12)]=√3/2
∴|PF2|=√3/2
由椭圆的第2定义有
|(|PF1|+|PF2|)|=2a
∴|PF1|=2a+|PF1|=2*2√3-√3/2=7√3/2
∴|PF1|/|PF2|=7:1
即7倍
2010-01-09
展开全部
七倍。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询