初一上期中考试数学试卷(河北教育出版社) 期末综合复习题也行 5
展开全部
七年级下学期期末数学试卷
(时间:120分钟 满分:120分)
亲爱的同学,这份试卷将再次记录你的自信、沉着、智慧和收获. 请认真审题,看清要求,仔细答题,要相信我能行。
题 号 一 二 三 四 五 总 分 六附加题
得 分
一、认真填一填:(每题3分,共30分)
1、剧院里5排2号可以用(5,2)表示,则(7,4)表示 。
2、不等式-4x≥-12的正整数解为 .
3、要使 有意义,则x的取值范围是_______________。
4、为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条这样做的道理是_______________________.
5、如图,一面小红旗其中∠A=60°, ∠B=30°,则∠BCD= 。
6、等腰三角形一边等于5,另一边等于8,则周长是_________ .
7、如图所示,请你添加一个条件使得AD‖BC, 。
8、若一个数的立方根就是它本身,则这个数是 。
9、点P(-2,1)向上平移2个单位后的点的坐标为 。
10、某校去年有学生1000名,今年比去年增加4.4%,其中寄宿学生增加了6%,走读学生减少了2%。问该校去年有寄宿学生与走读学生各多少名?设去年有寄宿学生x名,走读学生y名,则可列出方程组为 。
二、细心选一选:(每题3分,共30分)
11、下列说法正确的是( )
A、同位角相等; B、在同一平面内,如果a⊥b,b⊥c,则a⊥c。
C、相等的角是对顶角; D、在同一平面内,如果a‖b,b‖c,则a‖c。
12、观察下面图案,在A、B、C、D四幅图案中,能通过图案(1)的平移得到的是( )
13、有下列说法:
(1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数;
(3)无理数包括正无理数、零、负无理数;(4)无理数都可以用数轴上的点来表示。
其中正确的说法的个数是( )
A.1 B.2 C.3 D.4
14、若多边形的边数由3增加到n时,其外角和的度数( )
A.增加 B.减少 C.不变 D.变为(n-2)180º
15、某人到瓷砖店去买一种多边形形状的瓷砖,用来铺设无缝地板,他购买的瓷砖形状不可能是( )
A、等边三角形; B、正方形; C、正八边形; D、正六边形
16、如图,下面推理中,正确的是( )
A.∵∠A+∠D=180°,∴AD‖BC; B.∵∠C+∠D=180°,∴AB‖CD;
C.∵∠A+∠D=180°,∴AB‖CD; D.∵∠A+∠C=180°,∴AB‖CD
17、方程2x-3y=5,x+ =6,3x-y+2z=0,2x+4y,5x-y>0中是二元一次方程的有( )个。
A.1 B.2 C.3 D.4
18、为保护生态环境,陕西省某县响应国家“退耕还林”号召,将某一部分耕地改为林地,改变后,林地面积和耕地面积共有180平方千米,耕地面积是林地面积的25%,为求改变后林地面积和耕地面积各多少平方千米。设改变后耕地面积x平方千米,林地地面积y平方千米,根据题意,列出如下四个方程组,其中正确的是( )
A B C D
19、不等式组 的解集是( )
A.x<-3 B.x<-2 C.-3<x<-2 D.无解
20、.若不等式组的解集为-1≤x≤3,则图中表示正确的是( )
三、解答题:(几何部分21~24题。共20分)
21、小明家在A处,要到小河挑水,需修一条路,请你帮他设计一条最短的路线,并求出小明家到小河的距离.(比例为1∶20000)(3分)
22、这是一个动物园游览示意图,试设计描述这个动物园图中每个景点位置的一个方法,并画图说明。 (6分)
23、推理填空:(6分)
如图,EF‖AD,∠1=∠2,∠BAC=70°.将求∠AGD的过程填写完整.
因为EF‖AD,
所以∠2=____(____________________________)
又因为∠1=∠2
所以∠1=∠3(______________)
所以AB‖_____(_____________________________)
所以∠BAC+______=180°
(___________________________)
因为∠BAC=70°
所以∠AGD=_______。
24、已知,如图,在△ ABC中,AD,AE分别是 △ ABC的高和角平分线,若∠B=30°,
∠C=50°.(6分)
(1)求∠DAE的度数。(2)试写出 ∠DAE与∠C-∠B有何关系?(不必证明)
四、解答题:(
25、解方程组和不等式(组):(10分, 每题3分 )
(1)
(2)解不等式2x-1<4x+13,并将解集在数轴上表示出来:
(3) (4) . 应用题:
26、根据所给信息,分别求出每只小猫和小狗的价格. (4分)
买 一共要70元,
买 一共要50元.
27、某次数学竞赛共20道题。每题答对得10分,答错或不答扣5分。至多答错或不答几道题,得分才能不低于82分?(4分)
六、附加题
28、一个零件的形状如图,按规定∠A=90º ,∠ C=25º,∠B=25º,检验已量得∠BCD=150º,就判断这个零件不合格,运用三角形的有关知识说明零件不合格的理由。(3分)
29、中央商城在五一期间搞优惠促销活动.商场将29英吋和25英吋彩电共96台分别以8折和7折出售, 共得184400元. 已知29英吋彩电原价3000元/台, 25英吋彩电原价2000元/台, 问出售29英吋和25英吋彩电各多少台?(6分)
30、(本题6分)观察
,
即 ;
即 ;
猜想: 等于什么,并通过计算验证你的猜想。
31、如图,AB‖CD,分别探讨下面四个图形中∠APC与∠PAB、∠PCD的关系,请你从所得到的关系中任选一个加以说明。(适当添加辅助线,其实并不难)(6 分)
(1) (2) (3) (4) 参考答案:
一、填空题:(每题3分,共30分)
1、7排4号
2、x≤3
3、 x≥4
4、三角形的稳定性
5、9
6、18或21
7、∠EAD=∠B(∠CAD=∠C 或 ∠BAD+∠B=180°)
8、1,0,-1
9、(-2,3)
10.
二、选择题(每题3分,共30分)
11、D 12、C 13、C 14、C 15、C 16、C 17、A 18、B 19、A 20、 D
三、解答题
21、如图所示 过点A做AB垂直于河边L 垂足为点
量出图上距离AB=2.1cm
实际距离=2.1×20000
=42000 cm
=420 m
答:小明到小河的最短实际距离是420m
22、以南门为原点建立直角坐标系,水平向右为x轴正方向,竖直向上为y轴正方向,标原点和单位长度(1分)
南门(0,0);两栖动物(4,1);飞禽(3,4);狮子(-4,5),马(-3,-3)(用有序数对表示位置,每个1分)
23、 空依次填 ∠3 (两直线平行,同位角相等)
∠3 (等两代换)
DG(内错角相等,两直线平行)
∠AGD(两直线平行,同旁内角互补)
∠AGD=110°
24、(1) ∠DAE=10°
(2)∠C - ∠B=2∠DAE
四、解答题
25、解方程组和不等式和不等式组及实数计算.
(1)
(2) x>-7 解集在数轴上表示略
(3)x<-4.75
(4)1.5
五、应用题
26、 解:设买一只猫X元,买一只狗Y元。根据题意得:
解这个方程组得
答:买一只猫10元,买一只狗30元。
27、解:设至多答错或不答X道题,得分才能不低于82分。根据题意得:
10(20- X)-5 X≥82
解这个不等式得X≤7.867.
本题x应取正整数所以X取最大正整数7
答:至多答错或不答7道题,得分才能不低于82分。
六、附加题
28、零件不合格。理由略
29、解:设出售29英吋和25英吋彩电分别是X台Y台。根据题意得:
解这个方程组得
答:出售29英吋和25英吋彩电分别是70台26台
30、 ,验证略。
31、(1)∠APC=∠PAB+∠PCD
(2)∠APC+∠PAB+∠PCD =360°
(3)∠PAB=∠APC+∠PCD
(4)∠PCD=∠APC+∠PAB
选其一证明略.
(时间:120分钟 满分:120分)
亲爱的同学,这份试卷将再次记录你的自信、沉着、智慧和收获. 请认真审题,看清要求,仔细答题,要相信我能行。
题 号 一 二 三 四 五 总 分 六附加题
得 分
一、认真填一填:(每题3分,共30分)
1、剧院里5排2号可以用(5,2)表示,则(7,4)表示 。
2、不等式-4x≥-12的正整数解为 .
3、要使 有意义,则x的取值范围是_______________。
4、为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条这样做的道理是_______________________.
5、如图,一面小红旗其中∠A=60°, ∠B=30°,则∠BCD= 。
6、等腰三角形一边等于5,另一边等于8,则周长是_________ .
7、如图所示,请你添加一个条件使得AD‖BC, 。
8、若一个数的立方根就是它本身,则这个数是 。
9、点P(-2,1)向上平移2个单位后的点的坐标为 。
10、某校去年有学生1000名,今年比去年增加4.4%,其中寄宿学生增加了6%,走读学生减少了2%。问该校去年有寄宿学生与走读学生各多少名?设去年有寄宿学生x名,走读学生y名,则可列出方程组为 。
二、细心选一选:(每题3分,共30分)
11、下列说法正确的是( )
A、同位角相等; B、在同一平面内,如果a⊥b,b⊥c,则a⊥c。
C、相等的角是对顶角; D、在同一平面内,如果a‖b,b‖c,则a‖c。
12、观察下面图案,在A、B、C、D四幅图案中,能通过图案(1)的平移得到的是( )
13、有下列说法:
(1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数;
(3)无理数包括正无理数、零、负无理数;(4)无理数都可以用数轴上的点来表示。
其中正确的说法的个数是( )
A.1 B.2 C.3 D.4
14、若多边形的边数由3增加到n时,其外角和的度数( )
A.增加 B.减少 C.不变 D.变为(n-2)180º
15、某人到瓷砖店去买一种多边形形状的瓷砖,用来铺设无缝地板,他购买的瓷砖形状不可能是( )
A、等边三角形; B、正方形; C、正八边形; D、正六边形
16、如图,下面推理中,正确的是( )
A.∵∠A+∠D=180°,∴AD‖BC; B.∵∠C+∠D=180°,∴AB‖CD;
C.∵∠A+∠D=180°,∴AB‖CD; D.∵∠A+∠C=180°,∴AB‖CD
17、方程2x-3y=5,x+ =6,3x-y+2z=0,2x+4y,5x-y>0中是二元一次方程的有( )个。
A.1 B.2 C.3 D.4
18、为保护生态环境,陕西省某县响应国家“退耕还林”号召,将某一部分耕地改为林地,改变后,林地面积和耕地面积共有180平方千米,耕地面积是林地面积的25%,为求改变后林地面积和耕地面积各多少平方千米。设改变后耕地面积x平方千米,林地地面积y平方千米,根据题意,列出如下四个方程组,其中正确的是( )
A B C D
19、不等式组 的解集是( )
A.x<-3 B.x<-2 C.-3<x<-2 D.无解
20、.若不等式组的解集为-1≤x≤3,则图中表示正确的是( )
三、解答题:(几何部分21~24题。共20分)
21、小明家在A处,要到小河挑水,需修一条路,请你帮他设计一条最短的路线,并求出小明家到小河的距离.(比例为1∶20000)(3分)
22、这是一个动物园游览示意图,试设计描述这个动物园图中每个景点位置的一个方法,并画图说明。 (6分)
23、推理填空:(6分)
如图,EF‖AD,∠1=∠2,∠BAC=70°.将求∠AGD的过程填写完整.
因为EF‖AD,
所以∠2=____(____________________________)
又因为∠1=∠2
所以∠1=∠3(______________)
所以AB‖_____(_____________________________)
所以∠BAC+______=180°
(___________________________)
因为∠BAC=70°
所以∠AGD=_______。
24、已知,如图,在△ ABC中,AD,AE分别是 △ ABC的高和角平分线,若∠B=30°,
∠C=50°.(6分)
(1)求∠DAE的度数。(2)试写出 ∠DAE与∠C-∠B有何关系?(不必证明)
四、解答题:(
25、解方程组和不等式(组):(10分, 每题3分 )
(1)
(2)解不等式2x-1<4x+13,并将解集在数轴上表示出来:
(3) (4) . 应用题:
26、根据所给信息,分别求出每只小猫和小狗的价格. (4分)
买 一共要70元,
买 一共要50元.
27、某次数学竞赛共20道题。每题答对得10分,答错或不答扣5分。至多答错或不答几道题,得分才能不低于82分?(4分)
六、附加题
28、一个零件的形状如图,按规定∠A=90º ,∠ C=25º,∠B=25º,检验已量得∠BCD=150º,就判断这个零件不合格,运用三角形的有关知识说明零件不合格的理由。(3分)
29、中央商城在五一期间搞优惠促销活动.商场将29英吋和25英吋彩电共96台分别以8折和7折出售, 共得184400元. 已知29英吋彩电原价3000元/台, 25英吋彩电原价2000元/台, 问出售29英吋和25英吋彩电各多少台?(6分)
30、(本题6分)观察
,
即 ;
即 ;
猜想: 等于什么,并通过计算验证你的猜想。
31、如图,AB‖CD,分别探讨下面四个图形中∠APC与∠PAB、∠PCD的关系,请你从所得到的关系中任选一个加以说明。(适当添加辅助线,其实并不难)(6 分)
(1) (2) (3) (4) 参考答案:
一、填空题:(每题3分,共30分)
1、7排4号
2、x≤3
3、 x≥4
4、三角形的稳定性
5、9
6、18或21
7、∠EAD=∠B(∠CAD=∠C 或 ∠BAD+∠B=180°)
8、1,0,-1
9、(-2,3)
10.
二、选择题(每题3分,共30分)
11、D 12、C 13、C 14、C 15、C 16、C 17、A 18、B 19、A 20、 D
三、解答题
21、如图所示 过点A做AB垂直于河边L 垂足为点
量出图上距离AB=2.1cm
实际距离=2.1×20000
=42000 cm
=420 m
答:小明到小河的最短实际距离是420m
22、以南门为原点建立直角坐标系,水平向右为x轴正方向,竖直向上为y轴正方向,标原点和单位长度(1分)
南门(0,0);两栖动物(4,1);飞禽(3,4);狮子(-4,5),马(-3,-3)(用有序数对表示位置,每个1分)
23、 空依次填 ∠3 (两直线平行,同位角相等)
∠3 (等两代换)
DG(内错角相等,两直线平行)
∠AGD(两直线平行,同旁内角互补)
∠AGD=110°
24、(1) ∠DAE=10°
(2)∠C - ∠B=2∠DAE
四、解答题
25、解方程组和不等式和不等式组及实数计算.
(1)
(2) x>-7 解集在数轴上表示略
(3)x<-4.75
(4)1.5
五、应用题
26、 解:设买一只猫X元,买一只狗Y元。根据题意得:
解这个方程组得
答:买一只猫10元,买一只狗30元。
27、解:设至多答错或不答X道题,得分才能不低于82分。根据题意得:
10(20- X)-5 X≥82
解这个不等式得X≤7.867.
本题x应取正整数所以X取最大正整数7
答:至多答错或不答7道题,得分才能不低于82分。
六、附加题
28、零件不合格。理由略
29、解:设出售29英吋和25英吋彩电分别是X台Y台。根据题意得:
解这个方程组得
答:出售29英吋和25英吋彩电分别是70台26台
30、 ,验证略。
31、(1)∠APC=∠PAB+∠PCD
(2)∠APC+∠PAB+∠PCD =360°
(3)∠PAB=∠APC+∠PCD
(4)∠PCD=∠APC+∠PAB
选其一证明略.
展开全部
你可以从百度上直接搜索一下,很多的/
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
一元一次方程应用题归类汇集:
(一)行程问题:
1.从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲乙两地相距x千米,则列方程为________________。
2.甲、乙两人在相距18千米的两地同时出发,相向而行,1小时48分相遇,如果甲比乙早出发40分钟,那么在乙出发1小时30分时两人相遇,求甲、乙两人的速度。
3. 某人从家里骑自行车到学校。若每小时行15千米,可比预定的时间早到15分钟;若每小时行9千米,可比预定的时间晚到15分钟;求从家里到学校的路程有多少千米?
4.在800米跑道上有两人练中长路,甲每分钟跑320米,乙每分钟跑280米,两人同时同地同向起跑,t分钟后第一次相遇,t等于 分钟.
5.一列客车长200 m,一列货车长280 m,在平行的轨道上相向行驶,从两车头相遇到两车尾相离经过16秒,已知客车与货车的速度之比是3∶2,问两车每秒各行驶多少米?
时钟问题:
10.在6点和7点间,何时时钟分针和时针重合?(教材复习题)
行船问题:
12. 一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?
13.一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时50分钟,逆风飞行需要3小时,求两城市间距离。
(二)工程问题:
1.一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,需要几天完成?
2.某工程由甲、乙两队完成,甲队单独完成需16天,乙队单独完成需12天。如先由甲队做4天,然后两队合做,问再做几天后可完成工程的六分之五?
3.已知某水池有进水管与出水管一根,进水管工作15小时可以将空水池放满,出水管工作24小时可以将满池的水放完;
(1)如果单独打开进水管,每小时可以注入的水占水池的几分之几?
(2)如果单独打开出水管,每小时可以放出的水占水池的几分之几?
(3)如果将两管同时打开,每小时的效果如何?如何列式?
(4)对于空的水池,如果进水管先打开2小时,再同时打开两管,问注满水池还需要多少时间?
(三)和差倍分问题(生产、做工等各类问题):
1.整理一批图书,由一个人做要40小时完成。现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作。假设这些人的工作效率相同,具体先安排多少人工作。
2.岳池县城某居民小区的水、电、气的价格是: 水每吨1.55元, 电每度0.67元, 天然气每立方米1.47元. 某居民户在2006年11月份支付款67.54元, 其中包括用了5吨水、35度电和一些天然气的费用, 还包括交给物业管理4.00元的服务费. 问该居民户在2006年11月份用子多少立方米天然气?
3.已知:我市出租车收费标准如下:乘车里程不超过2公里的一律收费2元;乘车里程超过2公里的,除了收费2元外超过部分按每公里1.4元计费.
(1)如果有人乘出租车行驶了x公里(x>2),那么他应付多少车费?(列代数式,不化简)(8分)
(2)某游客乘出租车从客运中心到三星堆,付了车费10.4元,试估算从客运中心到三星堆大约有多少公里?
比赛积分问题:
10.某企业对应聘人员进行英语考试,试题由50道选择题组成,评分标准规定:每道题的答案选对得3分,不选得0分,选错倒扣1分。已知某人有5道题未作,得了103分,则这个人选错了 道题。
11.某学校七年级8个班进行足球友谊赛,采用胜一场得3分,平一场得1分,负一场得0分的记分制。某班与其他7个队各赛1场后,以不败的战绩积17分,那么该班共胜了几场比赛?
年龄问题:
12.甲比乙大15岁,5年前甲的年龄是乙的年龄的两倍,乙现在的年龄是________.
13.小华的爸爸现在的年龄比小华大25岁,8年后小华爸爸的年龄是小华的3倍多5岁,求小华现在的年龄
比例问题:
14.图纸上某零件的长度为32cm,它的实际长度是4cm,那么量得该图纸上另一个零件长度为12cm,求这个零件的实际长度。
15.一时期,日元与人民币的比价为25.2:1,那么日元50万,可以兑换人民币多少元?
16.魏老师到市场去买菜,发现若把10千克的菜放到秤上,指针盘上的指针转了180°.如图,第二天魏老师就给同学们出了两个问题:
(1)如果把0.5千克的菜放在秤上,指针转过多少角度?
(2)如果指针转了540,这些菜有多少千克?
(一)行程问题:
1.从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲乙两地相距x千米,则列方程为________________。
2.甲、乙两人在相距18千米的两地同时出发,相向而行,1小时48分相遇,如果甲比乙早出发40分钟,那么在乙出发1小时30分时两人相遇,求甲、乙两人的速度。
3. 某人从家里骑自行车到学校。若每小时行15千米,可比预定的时间早到15分钟;若每小时行9千米,可比预定的时间晚到15分钟;求从家里到学校的路程有多少千米?
4.在800米跑道上有两人练中长路,甲每分钟跑320米,乙每分钟跑280米,两人同时同地同向起跑,t分钟后第一次相遇,t等于 分钟.
5.一列客车长200 m,一列货车长280 m,在平行的轨道上相向行驶,从两车头相遇到两车尾相离经过16秒,已知客车与货车的速度之比是3∶2,问两车每秒各行驶多少米?
时钟问题:
10.在6点和7点间,何时时钟分针和时针重合?(教材复习题)
行船问题:
12. 一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?
13.一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时50分钟,逆风飞行需要3小时,求两城市间距离。
(二)工程问题:
1.一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,需要几天完成?
2.某工程由甲、乙两队完成,甲队单独完成需16天,乙队单独完成需12天。如先由甲队做4天,然后两队合做,问再做几天后可完成工程的六分之五?
3.已知某水池有进水管与出水管一根,进水管工作15小时可以将空水池放满,出水管工作24小时可以将满池的水放完;
(1)如果单独打开进水管,每小时可以注入的水占水池的几分之几?
(2)如果单独打开出水管,每小时可以放出的水占水池的几分之几?
(3)如果将两管同时打开,每小时的效果如何?如何列式?
(4)对于空的水池,如果进水管先打开2小时,再同时打开两管,问注满水池还需要多少时间?
(三)和差倍分问题(生产、做工等各类问题):
1.整理一批图书,由一个人做要40小时完成。现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作。假设这些人的工作效率相同,具体先安排多少人工作。
2.岳池县城某居民小区的水、电、气的价格是: 水每吨1.55元, 电每度0.67元, 天然气每立方米1.47元. 某居民户在2006年11月份支付款67.54元, 其中包括用了5吨水、35度电和一些天然气的费用, 还包括交给物业管理4.00元的服务费. 问该居民户在2006年11月份用子多少立方米天然气?
3.已知:我市出租车收费标准如下:乘车里程不超过2公里的一律收费2元;乘车里程超过2公里的,除了收费2元外超过部分按每公里1.4元计费.
(1)如果有人乘出租车行驶了x公里(x>2),那么他应付多少车费?(列代数式,不化简)(8分)
(2)某游客乘出租车从客运中心到三星堆,付了车费10.4元,试估算从客运中心到三星堆大约有多少公里?
比赛积分问题:
10.某企业对应聘人员进行英语考试,试题由50道选择题组成,评分标准规定:每道题的答案选对得3分,不选得0分,选错倒扣1分。已知某人有5道题未作,得了103分,则这个人选错了 道题。
11.某学校七年级8个班进行足球友谊赛,采用胜一场得3分,平一场得1分,负一场得0分的记分制。某班与其他7个队各赛1场后,以不败的战绩积17分,那么该班共胜了几场比赛?
年龄问题:
12.甲比乙大15岁,5年前甲的年龄是乙的年龄的两倍,乙现在的年龄是________.
13.小华的爸爸现在的年龄比小华大25岁,8年后小华爸爸的年龄是小华的3倍多5岁,求小华现在的年龄
比例问题:
14.图纸上某零件的长度为32cm,它的实际长度是4cm,那么量得该图纸上另一个零件长度为12cm,求这个零件的实际长度。
15.一时期,日元与人民币的比价为25.2:1,那么日元50万,可以兑换人民币多少元?
16.魏老师到市场去买菜,发现若把10千克的菜放到秤上,指针盘上的指针转了180°.如图,第二天魏老师就给同学们出了两个问题:
(1)如果把0.5千克的菜放在秤上,指针转过多少角度?
(2)如果指针转了540,这些菜有多少千克?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询