对数函数的积分公式是什么?
对数函数没有特定的积分公式,一般按照分部积分来计算。
公式种类
不定积分
是函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数)叫做函数f(x)的不定积分,记作,即∫f(x)dx=F(x)+C.其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数,求已知函数不定积分的过程叫做对这个函数进行积分。 [1]
注:∫f(x)dx+c1=∫f(x)dx+c2, 不能推出c1=c2
定积分
积分是微积分学与数学分析里的一个核心概念。通常分为定积分和不定积分两种。 [2] 直观地说,对于一个给定的实函数f(x),在区间[a,b]上的定积分记为:
若f(x)在[a,b]上恒为正,可以将定积分理解为在Oxy坐标平面上,由曲线(x,f(x))、直线x=a、x=b以及x轴围成的面积值(一种确定的实数值)。
拓展资料
公式汇总
不定积分
不定积分的积分公式主要有如下几类:含ax+b的积分、含√(a+bx)的积分、含有x^2±α^2的积分、含有ax^2+b(a>0)的积分、含有√(a²+x^2) (a>0)的积分、含有√(a^2-x^2) (a>0)的积分、含有√(|a|x^2+bx+c) (a≠0)的积分、含有三角函数的积分、含有反三角函数的积分、含有指数函数的积分、含有对数函数的积分、含有双曲函数的积分。
含a+bx的积分
含有a+bx的积分公式主要有以下几类:
含√(a+bx)的积分
含有√(a+bx)的积分公式主要包含有以下几类:
含有x^2±α^2的积分
被积函数中含有√(a^2+x^2) (a>0)的积分有
含有√(a^2-x^2) (a>0)的积分
被积函数中含有√(a^2-x^2) (a>0)的积分有:
对于a2>x2有:
2024-07-18 广告
对数函数没有特定的积分公式,一般按照分部积分来计算。
例如:积分ln(x)dx
原式=xlnx-∫xdlnx
=xlnx-∫x*1/xdx
=xlnx-∫dx
=xlnx-x+C
一般地,如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。
一般地,函数y=logax(a>0,且a≠1)叫做对数函数,也就是说以幂为自变量,指数为因变量,底数为常量的函数,叫对数函数。
积分是微分的逆运算,即知道了函数的导函数,反求原函数。在应用上,积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的。
对数与指数之间的关系
当a>0且a≠1时,a^x=nx=㏒(a)n
广告 您可能关注的内容 |