求朋友帮助高中数学题啊!
f(n))=1/n+1+1/n+2....+1/2n.如果对任意n≥2.n为正实数。不等式12f(n)+7logab>7log(a+1)b+7恒成立.则实数b的取值范围...
f(n))=1/n+1 +1/n+2 ....+1/2n.如果对任意n≥2.n为正实数。不等式12f(n)+7logab>7log(a+1)b+7恒成立.则实数b的取值范围
展开
1个回答
展开全部
先证明f(n)为递增函数,证明如下
f(n+1)-f(n)=1/(2n+1)-1/(2n+2) 恒大于0;所以f(n)的最小值为f(2)=7/12
把最小值代入式子中,并化简则可得,只需要
logab>log(a+1)b 恒成立。
由于定义域可知 a>0 a<>1,b>0
显然b=1时不能使式子恒成立。所以得需要
1/logba>1/logb(a+1) 恒成立
化简得
logb a/(a+1) / logba * logb(a+1) >0 需恒成立
即 需要logb a/(a+1)* logba * logb(a+1)>0
显然a/(a+1)<1,a+1>1的
则可以推出logb a/(a+1)和logb(a+1)始终是异号
则式子恒成立否只取决于logba的符号,所以 需要
logba<0 恒成立
此处分两种情况
1. a>1时 0<b<1;
2. 0<a<1时 b>1.
f(n+1)-f(n)=1/(2n+1)-1/(2n+2) 恒大于0;所以f(n)的最小值为f(2)=7/12
把最小值代入式子中,并化简则可得,只需要
logab>log(a+1)b 恒成立。
由于定义域可知 a>0 a<>1,b>0
显然b=1时不能使式子恒成立。所以得需要
1/logba>1/logb(a+1) 恒成立
化简得
logb a/(a+1) / logba * logb(a+1) >0 需恒成立
即 需要logb a/(a+1)* logba * logb(a+1)>0
显然a/(a+1)<1,a+1>1的
则可以推出logb a/(a+1)和logb(a+1)始终是异号
则式子恒成立否只取决于logba的符号,所以 需要
logba<0 恒成立
此处分两种情况
1. a>1时 0<b<1;
2. 0<a<1时 b>1.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询