
已知函数y=ax-1/立方根(ax2+4ax+3)的定义域为R,求实数a的取值范围
2个回答
展开全部
由函数方程:y=ax-1/(ax²+4ax+3)
可知函数定义域为 x满足 ax²+4ax+3≠0
当a=0,ax²+4ax+3=3 恒成立
当a≠0,要使定义域为R,则函数f(x)=ax²+4ax+3图像与x轴无交点
f(x)=ax²+4ax+3=a(x²+4x+3/a)=a[(x+2)²+3/a-4]=a[(x+2)²+(3-4a)/a]
只需考虑(x+2)²+(3-4a)/a与x轴无交点,那么要求(3-4a)/a>0 即△<0。
可知函数定义域为 x满足 ax²+4ax+3≠0
当a=0,ax²+4ax+3=3 恒成立
当a≠0,要使定义域为R,则函数f(x)=ax²+4ax+3图像与x轴无交点
f(x)=ax²+4ax+3=a(x²+4x+3/a)=a[(x+2)²+3/a-4]=a[(x+2)²+(3-4a)/a]
只需考虑(x+2)²+(3-4a)/a与x轴无交点,那么要求(3-4a)/a>0 即△<0。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询