展开全部
f(x)=2(1-cos2x)/2+√3(sin2x)+1
=√3sin2x-cos2x+2
=2sin2xcosπ/6-2cos2xsinπ/6+2
=2(sin2xcosπ/6-cos2xsinπ/6)+2
=2sin(2x-π/6)+2
所以T=2π/2=π
增函数时2kπ-π/2<2x-π/6<2kπ+π/2
所以增区间(kπ-π/6,kπ+π/3)
同理,减区间(kπ+π/3,kπ+5π/6)
sin(2x-π/6)最值是±1
所以最大=4,最小=0
=√3sin2x-cos2x+2
=2sin2xcosπ/6-2cos2xsinπ/6+2
=2(sin2xcosπ/6-cos2xsinπ/6)+2
=2sin(2x-π/6)+2
所以T=2π/2=π
增函数时2kπ-π/2<2x-π/6<2kπ+π/2
所以增区间(kπ-π/6,kπ+π/3)
同理,减区间(kπ+π/3,kπ+5π/6)
sin(2x-π/6)最值是±1
所以最大=4,最小=0
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询