什么是周期函数?给一下定义和例题

 我来答
过往再见2
2015-11-01 · TA获得超过1.7万个赞
知道答主
回答量:2248
采纳率:96%
帮助的人:84.3万
展开全部
对于函数y=f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期。事实上,任何一个常数kT(k∈Z且k≠0)都是它的周期。

要想判断T是不是函数y=f(x)的周期有什么方法?我们现有的理论依据只有定义,如何使用定义?

对于定义域内的每一个x,都有f(x+T)=f(x),而不是有(存在着)某一个x,使f(x+T)=f(x)成立.要想证明T不是周期,只要找到一个x0,使得f(x0+T)≠f(x0)即可.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友e48d94b79
推荐于2016-10-16 · TA获得超过850个赞
知道答主
回答量:179
采纳率:0%
帮助的人:162万
展开全部
1、周期函数的定义:对于函数y=f(x),若存在常数T≠0,使得f(x+T) = f(x),则函数y= f(x)称为周期函数,T称为此函数的周期。
性质1:若T是函数y=f(x)的任意一个周期,则T的相反数(-T)也是f(x)的周期。
性质2:若T是函数f(x)的周期,则对于任意的整数n(n≠0),nT也是f(x)的周期。
性质3:若T1、T2都为函数f(x)的周期,且T1±T2≠0,则T1±T2也是f(x)的周期。
2、定义:在函数f(x)的周期的集合中,我们称其正数者为函数f(x)的正周期,称其负数者为函数f(x)的负周期。若所有正周期中存在最小的一个,则我们称之为函数f(x)的最小正周期,记作T※。
性质4:若T※为函数f(x)的最小正周期,T为函数f(x)的任意一个周期,则 Z -(非零整数)。
性质5:若函数f(x)存在最小正周期T※,且T1、T2分别为函数f(x)的任意两个周期,则 为有理数。
注意:常值函数是周期函数,但没有最小正周期

参考资料: http://www.cqwez.com/teachers/shuxue/dufanglu/files/%D6%DC%C6%DA%BA%AF%CA%FD%C7%B3%CE%F61.doc

本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式