甲乙两车从AB两地相向行使4小时相遇后各自前进过3小时甲车到B地乙车离A地还有70千米求AB两地距离
展开全部
【题目1】有甲乙丙三车各以一定的速度从A到B,乙比丙晚出发10分钟,出发后40分钟追上丙,甲比乙又晚出发10分钟,出发后60分钟追上丙,问,甲出发后多少分钟可以追上乙?
【解答】乙丙的速度比是(10+40):40=5:4,甲丙的速度比是(20+60):60=4:3。所以甲乙的速度比是4/3:5/4=16:15,甲比乙晚出发10分钟,可以得出甲用了15×10=150分钟追上乙。
【题目2】正方形ABCD是一条环形公路,已知汽车在AB上的时速为90千米,在BC上的时速是120千米,在CD上的时速是60千米,在DA上的时速是80千米。已知从CD上的一点P同时反向各发一辆汽车,他们将在A、B的中点上相遇。那么如果从PC中点M点同时反向各发一辆汽车,他们将在A、B上的一点N相遇。求AN占AB的几分之几?
【解答】设每边720千米,AB、BC、CD和DA分别需要8,6,12,9小时,D→P需要(12-9+6)÷2=4.5小时,P→D→A需要13.5小时,这时相距8+6-13.5=0.5小时的路程,A→N就需要0.5÷2=1/4小时,所以AN:AB=1/4÷8=1/32
【题目3】甲乙二人在400米的跑道上进行两次竞赛,第一次乙先跑到25米后,甲开始追乙,到终点比乙提前7.5秒,第二次乙先跑18秒后,甲追乙,当乙到终点时,甲距终点40米,求在400米内,甲乙速度各多少?
【解答】第一次甲行全程的时间乙行了全程的1-25÷400=15/16少7.5秒。第二次甲行全程的1-40÷400=9/10的时间乙就行了全程的15/16×9/10=27/32少7.5×9/10=27/4秒。乙行完全程需要(18-27/4)÷(1-27/32)=72秒。乙每秒行400÷72=50/9米。甲每秒行(400-40)÷(72-18)=20/3米
【题目4】甲乙两人分别从AB两地同时出发,在AB之间往返跑步,甲每秒跑3米,乙每秒跑7米。如果他们第四次相遇点与第五次相遇点的距离是150米,那么AB之间的距离是多少米?
【解答】迎面相遇两人单程和依次是1,3,5,7,9,……。追上相遇的单程和依次是(3+7)÷(7-3)=2.5,2.5×3=7.5,……,所以相遇的单程和是1,2.5,3,5,7,7.5,9,……,因此第四次和第五次相遇是迎面相遇。相遇点的距离占单程的(2-3/10×5)-(3/10×7-2)=2/5,因此得出AB的距离是150÷2/5=375米。
【题目5】甲乙两辆车在一条长为10千米的环形公路上从同一地点同时反向开出,甲车开出4千米时两车相遇。如果每次相遇后两车都提速10%,求第三次相遇时甲车离出发点多远。
【解答】每次提速之后的速度比也不会发生变化。每次相遇甲行4千米,第三次相遇甲行了4×3=12,和出发点相距12-10=2千米。
【题目6】甲、乙两人同时从山脚开始爬山,到达山顶后就立即下山,他们下山的速度是各自上山速度的2倍。甲到达山顶时乙距山顶还有400米;甲回到山脚时,乙刚好下到半山腰。求山脚到山顶的距离。
【解答】甲乙的速度比是(1+1×2):(1×2+0.5)=6:5,山脚到山顶400×6=2400米。
【题目7】甲乙两车同时从A、B两地出发相向而行,两车中途相遇后,甲又用4小时到B地,乙又用9小时到A地,相遇时,甲车比乙车多行了90千米,求甲乙两车每小时各行多少千米?
【解答】根据行同一段时间的比4:相遇时间=相遇时间:9,得到相遇时间是6小时,可以知道甲乙的速度比是6:4=3:2, 那么相遇时甲乙行的路程比也是3:2,即相遇时甲行了90×3=270千米,乙行了90×2=180千米
【题目1】一次越野赛跑中,当小明跑了1600米时,小刚跑了1450米,此后两人分别以每秒a米和每秒b米匀速跑,又过100秒时小刚追上小明,200秒时小刚到达终点,300秒时小明到达终点,这次越野赛跑的全程为多少?
【解答】后来小刚的速度是小明的(300-100)÷(200-100)=2倍,所以小明每100秒行150米,因此全程是1600+150×3=2050米。
【题目2】甲乙两车分别从AB两地同时出发相向而行,出发时,甲和乙的速度比是4:3,相遇后,甲的速度减少10%,乙的速度增加20%。这样,当甲到达B地时,乙离A地还有17千米,那摩AB两地相距多少千米?
【解答】后来的速度比是(4×0.9):(3×1.2)=1:1,所以甲行3/7,乙还离A地4/7-3/7=1/7,即AB两地相距17÷1/7=119千米。
【题目3】从甲地到乙地全是山路,其中上山路程是下山路程的2/3,一辆汽车从甲地到乙地共行7小时,汽车上山速度是下山速度的一半,这辆这辆汽车从乙地返回甲地需要多少小时?
【解答】上山速度看作1,下山速度看作2,去时下山路程是1,上山路程是2/3,返回时上山路程是1,下山路程是2/3,所以有7÷(1÷2+2/3÷1)×(2/3÷2+1÷1)=8小时。
【题目4】甲乙两地,如果去时的速度提高25%,可比原定的时间提前6分钟到达,如果每小时少行10千米,则将多用1/3的时间才能到达,问两地的距离。
【解答】原定时间是6÷25%+6=30分钟,即1/2小时。原定速度是10÷1/3+10=40千米,则两地之间的距离是40×1/2=20千米。
【题目5】小丁骑自行车去小周家,先以12千米/小时的速度下山,然后又以9千米/小时的速度走过一段平路,到小周家共用了55分钟;后来时他用8千米/小时的速度通过平路,又以4千米/小时的速度上山回到了家,共用了90分钟,求小周家和小丁家的距离
【解答】去时速度坡路12平路9,返回坡路4平路8,如果返回坡路4×3=12平路8×3=24用去90÷3=30分钟。行平路速度9千米/时比24千米/时多用(55-30)÷60=5/12小时,所以平路的长度是5/12÷(1/9-1/24)=6千米,坡路就是(90/60-6/8)×4=3千米,两家相距6+3=9千米。
【题目6】甲乙丙三人同时从同一地点出发,沿一条线路追前面的小明,他们三人分别用9分,15分,20分别追上小明,已知甲每小时行24千米,已知甲每小时行24千米,乙每小时行20千米,丙每小时行多少千米?
【解答】小明分别与甲乙丙的速度差的比是1/9:1/15:1/20=20:12:9,很容易知道每份是(24-20)÷(20-12)=0.5,乙丙相差0.5×(12-9)=1.5千米,所以丙的速度是20-1.5=18.5千米/小时。
【题目7】网友求助:有一个圆形的池子,ABC三人同时由池子边的某一地点出发,绕池子跑步。AB向同一方向跑,C在途中遇上A,然后经过4分钟又遇上B。A每分钟跑400米。B每分钟跑200米。C每分钟跑150米。池子的周长是多少米?
【解答】设周长是单位1,AC相遇用的时间是1÷(400+150)=1/550,BC相遇用的时间是1÷(200+150)=1/350,那么周长就是4÷(1/350-1/550)=3850米。
【题目7】A的速度为每小时行30千米,B的速度为每小时行20千米,A和B同时从甲地出发到乙地,他们先后到乙地后又返回甲地……,如此往返来回运动。已知A与B第二次迎面相遇与A第二次追上B的两点相距45千米,甲乙两地相距多少千米?
【解答】第一次迎面相遇共行2个单程,第二次迎面相遇共行4个单程,相遇点距离甲地3/5×4-2=2/5;第一次追上A比B多行2个单程,即A6B4个单程,第二次追上A12B8个单程,偶数个单程都在甲地追上。因此甲乙两地相距45÷2/5=112.5千米。
【题目8】小明和小丁一起去上学,他们以5千米/时的速度行走,走了18分钟,小明突然想起忘带数学书,于是赶紧以10千米/时的速度往家跑,小丁仍以原速前进,若取书的时间忽略不计,小明仍以10千米/时的速度追赶小丁,多长时间才能追上?
【解答】后来小明的速度是小丁的10÷5=2倍,从返回到追上共用18×2÷(2-1)=36分钟。如果从拿到书到追上,共需要36-18÷2=27分钟。
【题目9】AB两地相距2400米,甲从A地.乙从B地同时出发,在A.B间往返长跑,甲每分钟跑300米,乙每分钟跑240米,在35分钟后停止运动。甲乙两人在第几次相遇时距A地最近?最近距离是多少米。
【解答】35分钟共行(300+240)×35=18900米,即18900÷2400=7个单程多2100米,分别在1,3,5,7个单程的时候会迎面相遇,速度比是300:240=5:4,要追上相遇至少需要9个单程。每次相遇分别距离A地是5/9,2-15/9=1/3,25/9-2=7/9,4-35/9=1/9,所以是第四次相遇的时候,距离是2400×1/9=800/3米。
【题目10】A,B,C三两车同时从甲地到乙地,按原来速度A应比B早到10分钟,在他们同时出发20分钟后,因为天降大雨,A的速度下降1/4,C速度下降1/5,B速度不变,结果三车同时到达乙地,问,C车行完全程原定要用多少分钟?
【解答】把20分钟后行的这段路的时间看作单位1,那么A、B、C原来行的时间分别是3/4、1、4/5,因为A比B少10分钟,所以后来行这段路用的时间是10÷(1-3/4)=40分钟,C原来就需要40×4/5+20=52分【题目1】甲乙二人同时从A地到B地。甲每小时走的路程比乙走的3倍还多1千米。甲到达B地后,停留45分钟,然后从B地返回,在途中遇乙。这时距他们出发的时间恰好过了3小时。如果A、B两地相距25.5千米。求甲乙二人的速度。
【解答】甲行了9/4小时,相当于乙行的9/4×3=27/4小时多9/4千米。乙每小时行(25.5×2-9/4)÷(27/4+3)=5千米,甲每小时行5×3+1=16千米。
【题目2】甲乙两人同时从A地出发,背向而行,分别前往B.C两地,已知甲乙两人每小时共行96千米,甲乙的速度比是9:7,两人恰好同时同时分别到达BC,乙立即用原速度返回,当乙行了40分钟后,甲在B地得到通知,要求立即返回并且要与乙同时到达A地,甲返回时把原速度提高了20%,这样两人同时到达A地,问B、C间的路程。
【解答】相遇时间是40/60÷20%+40/60=4小时,两地距离96×4=384千米。
【题目3】小明家和小画家在一条之路上,两人从家中同时出发相向而行,在离小明家500米处第一次相遇,相遇后两人保持原速继续前进,到达对方家后立即返回,在离小华家600米处第二次相遇,求两家的距离是多少米?
【解答】共行一个单程小明行500米,第二次相遇共行三个单程,小明行了500×3=1500米,比一个单程多行了600米,所以一个单程是1500-600=900米。
【题目4】甲乙两车同时从A、B两地相向而行,途中相遇,相遇时距A地90千米。相遇后两车继续以原速前进,到达目的地后立即返回,在途中第二次相遇。这时相遇点距A地50千米。已知从第一次相遇到第二次相遇的时间是4小时,求甲乙两地的速度?
【解答】同样的道理,(90×3+50)÷2=160千米。
【题目5】客货两车从甲乙两地同时相向而行分别到达两地立即反回,第二次相遇时,客车距乙地48米。已知客货两车速度比为5:4,甲乙相距多少千米?
【解答】第一次相遇共行一个单程,客车行5/9个单程,第二次相遇共行三个单程,客车行5/9×3=5/3个单程,超过了5/3-1=2/3个单程,所以一个单程是48÷2/3=72千米。
【题目6】甲、乙二人同时从A、B两地相向而行,两人相遇的地点距离A地180千米。第二天,甲、乙二人又同时从A、B两地相向而行,甲把自己的速度提高到原来4倍,乙的速度不变,两人相遇的地点恰好又距离B地180千米,第三天,甲、乙二人还是同时从A,B两地相向而行,甲的速度与第一天速度相同,乙把自己的速度提高到原来的4倍,那么这次他们相遇的地点与A、B两地中点之间的距离是多少千米?
【解答】根据条件可以知道,乙原来的速度是甲第一天和第二天速度的比例中项。可以知道甲乙原速的比是1:2,所以全程是180×(2+1)=540千米。第三天的速度比就是1:8,相遇点距离中点是(1/2-1/9)×540=210千米。
【题目7】甲乙丙三个车站在同一条公路上,且他们之间路程相等,A,B两人分别从甲丙两站相向而行,A在超过乙路150米处和B相遇,然后两人继续前行,A在到丙站后,立即返回,在经过乙站450米处,追上了B。求甲丙两站的距离。
【解答】追上时A行的路程是相遇时的3倍,那么B在追上时行的总路程也是相遇时行的路程的3倍,所以甲丙两站的距离是(450+150×3)÷(1/2×3-1/2)=900米。
【题目8】B处的兔子和A处的狗相距56米。兔子从B处逃跑,狗同时从A处跳出追兔子,狗一跳2米,狗跳3次的时间和兔子跳4次的时间相同。兔子跳出112米后被狗追上,问兔子一跳多少米?
【解答】狗和兔子的速度比是(112+56):112=3:2,狗跳3次跳了2×3=6米,兔子就跳6×2/3=4米,所以兔子每跳一次4÷4=1米
【题目9】甲乙两车分别从A、B两地同时开出,相对而行,4小时后甲车行了全程的1/4,乙车行的路程比全程的12.5%少60千米,甲乙两车继续行驶735千米相遇。求AB两地相距多少千米?
【解答】735-60=675千米占全程的1-1/4-12.5%=5/8,所以两地之间的距离是675÷5/8=1080千米。
【题目10】火车每分钟行1050米,从车头与一个路标并列到车尾离开这个路标3分钟后一辆摩托车以每分钟1200米的速度从这个路标出发,摩托车出发25分钟后,与火车的车头正好并列,求这列火车的长。
【解答】摩托车行了1200×25=30000米,车尾行了1050×(25+3)=29400米。所以火车长30000-29400=600米。
钟。
【题目1】船顺流航行速度是每小时8千米,逆流而上的速度是每时7千米,两船同时从同一地点出发,甲船顺流而下,然后返回,乙船逆流而上,然后返回,经过2时同时回到出发点,这2小时中,有多少时间,甲乙两船航行方向是相同的?
【解答】2÷(7+8)=2/15小时
********************************
【题目2】在同一路线上有ABCD四个人,每人的速度固定不变。已知A在12时追上C,14时时与D迎面相遇,16时时与B迎面相遇。而B在17时时与C迎面相遇,18时追上D,那么D在几时迎面遇到C。
【解答】把12时AB的距离看作单位1,四人速度分别用ABCD来表示。A+B=1/4,B+C=1/5。2(A+D)+6(B-D)=4(A+B),得出B-D=1/2(A+B)=1/2×1/4=1/8,12时C和D相距2×(1/4-1/8)=1/4,C+D=1/5-1/8=3/40,所以需要的时间是1/4÷3/40=10/3小时,即在15时20分的时候C和D相遇。
********************************
【题目3】一条河上有甲、乙两个码头,甲在乙的上游50千米处。客船和货船分别从甲乙两个码头同时出发向上游行使。两船的静水速度相同且始终保持不变。客船出发时有一物品从船上掉入水中,10分钟后此物品距离客船5千米。客船在行使20千米后折回向下游追赶此物,追上时恰好与货船相遇。求水流的速度。
【解答】船静水每小时行5÷10/60=30千米,客船从返回到与货船相遇的时间是50÷(30×2)=5/6小时,由于这个时候客船也追上了物品,所以客船行逆水行20千米就用了5/6小时,那么逆水每小时行20÷5/6=24千米,水流速度就是每小时30-24=6千米。
********************************
【题目4】某校在400米环行跑道上进行1万米比赛,甲、乙两名运动员同时起跑后乙的速度始终保持不变,开始时甲比乙慢,在第15分钟时甲加快速度并保持这个速度不变,在第18分钟时甲追上乙并且开始超过乙。在第23分钟时甲再次追上乙,而在23分50秒时甲到达终点。那么乙跑完全程所用的时间是多少分钟?
【解答】后来甲23-18=5分钟就超过乙一圈,又行50秒就多行50/60÷5=1/6圈。10000米是25圈,乙用23又5/6分钟行了25-1-1/6=23又5/6圈,所以乙每分钟行1圈。所以乙行完全程需要25分钟。
********************************
【题目5】客车和货车同时从A地出发反向行驶,5小时后,客车到达甲地,货车离乙地还有90千米,已知A地到甲地的距离与甲乙两地间的距离比是1:3,而且货车与客车的速度比是5:3,甲乙两地间的距离是多少千米?
【解答】客车行1份到甲地,货车就行5/3份距离乙地90千米,这90千米就是3-1-5/3=1/3份,所以每份是90÷1/3=270千米,那么甲乙两地间的距离是270×3=810千米。
********************************
【题目6】甲乙二人分别从A,B两地同时出发相向而行,5小时后相遇在C点。如果甲速度不变,乙每小时多行4千米,且甲乙还从A,B两地同时出发相向而行,则相遇点D距C点10千米;如果乙速度不变,甲每小时多行3千米,且甲乙还从A,B两地同时出发相向而行,则相遇点E距C点5千米,问甲原来的速度是多少?
【解答】根据第一种假设,甲如果行到C点,甲需要再行10千米,乙需要再行4×5-10=10千米,在同样的时间内,甲乙行的路程相等,说明甲乙此时的速度相等,也就说明原来甲每小时比乙多行4千米。根据第二种假设,乙行到C还要走5千米,甲就还要行3×5-5=10千米,相同的时间,甲行的路程是乙的10÷5=2倍,说明此时甲的速度是乙的2倍,也就是甲每小时多行3千米,就是乙的2倍。可以得出乙每小时行是3+4=7千米,甲每小时行7+4=11千米。
********************************
【题目7】一只船从甲港到乙港往返一次共用6小时,去时顺水比回来时每小时多行10千米,因此前3小时比后3小时多行25千米,这只船在静水中的速度是多少千米每小时,水流速度呢?
【解答】水流速度是10÷2=5千米/时,顺水时间是25÷10=2.5小时,逆水时间是6-2.5=3.5小时,逆水每小时行2.5×10÷(3.5-2.5)=25千米,静水每小时行25+5=30千米。
【题目8】一条公路上有相距120千米的两个汽车站A和B,一天24小时中每逢整点就有一辆汽车从A站出发开往B站,同时也有一辆汽车从B站出发开往A站,所有汽车的速度都一样。有一人早上7点钟骑自行车自A站出发沿公路向B站前进。已知在途中有8辆从A站驶往B站的汽车超过他,还有一辆与他同时到达B站。如果这个人在中途还遇到14辆从B站驶往A站的汽车,那么骑车的人平均时速最少是多少千米?
【题目9】一支解放军队伍全长900米,排尾的通讯员骑摩托车从排尾赶到排头将电报交给排头的首长,然后以原速的1/8回到排尾将命令传达给指挥官,这时队伍共前进了900米,已知队伍匀速前进,当通讯员赶到排头时,解放军队伍已经行走了多少米?这段时间通讯员共走了多少米?
【解答】设通讯员的速度是队伍速度的x倍,则有900÷(x-1)+900÷(x/8+1)=900,解得x=4,所以通讯员赶到排头时,队伍已经行走了900÷(4-1)=300米。通讯员共走了600×4÷8+300×4=1500米。
【解答】乙丙的速度比是(10+40):40=5:4,甲丙的速度比是(20+60):60=4:3。所以甲乙的速度比是4/3:5/4=16:15,甲比乙晚出发10分钟,可以得出甲用了15×10=150分钟追上乙。
【题目2】正方形ABCD是一条环形公路,已知汽车在AB上的时速为90千米,在BC上的时速是120千米,在CD上的时速是60千米,在DA上的时速是80千米。已知从CD上的一点P同时反向各发一辆汽车,他们将在A、B的中点上相遇。那么如果从PC中点M点同时反向各发一辆汽车,他们将在A、B上的一点N相遇。求AN占AB的几分之几?
【解答】设每边720千米,AB、BC、CD和DA分别需要8,6,12,9小时,D→P需要(12-9+6)÷2=4.5小时,P→D→A需要13.5小时,这时相距8+6-13.5=0.5小时的路程,A→N就需要0.5÷2=1/4小时,所以AN:AB=1/4÷8=1/32
【题目3】甲乙二人在400米的跑道上进行两次竞赛,第一次乙先跑到25米后,甲开始追乙,到终点比乙提前7.5秒,第二次乙先跑18秒后,甲追乙,当乙到终点时,甲距终点40米,求在400米内,甲乙速度各多少?
【解答】第一次甲行全程的时间乙行了全程的1-25÷400=15/16少7.5秒。第二次甲行全程的1-40÷400=9/10的时间乙就行了全程的15/16×9/10=27/32少7.5×9/10=27/4秒。乙行完全程需要(18-27/4)÷(1-27/32)=72秒。乙每秒行400÷72=50/9米。甲每秒行(400-40)÷(72-18)=20/3米
【题目4】甲乙两人分别从AB两地同时出发,在AB之间往返跑步,甲每秒跑3米,乙每秒跑7米。如果他们第四次相遇点与第五次相遇点的距离是150米,那么AB之间的距离是多少米?
【解答】迎面相遇两人单程和依次是1,3,5,7,9,……。追上相遇的单程和依次是(3+7)÷(7-3)=2.5,2.5×3=7.5,……,所以相遇的单程和是1,2.5,3,5,7,7.5,9,……,因此第四次和第五次相遇是迎面相遇。相遇点的距离占单程的(2-3/10×5)-(3/10×7-2)=2/5,因此得出AB的距离是150÷2/5=375米。
【题目5】甲乙两辆车在一条长为10千米的环形公路上从同一地点同时反向开出,甲车开出4千米时两车相遇。如果每次相遇后两车都提速10%,求第三次相遇时甲车离出发点多远。
【解答】每次提速之后的速度比也不会发生变化。每次相遇甲行4千米,第三次相遇甲行了4×3=12,和出发点相距12-10=2千米。
【题目6】甲、乙两人同时从山脚开始爬山,到达山顶后就立即下山,他们下山的速度是各自上山速度的2倍。甲到达山顶时乙距山顶还有400米;甲回到山脚时,乙刚好下到半山腰。求山脚到山顶的距离。
【解答】甲乙的速度比是(1+1×2):(1×2+0.5)=6:5,山脚到山顶400×6=2400米。
【题目7】甲乙两车同时从A、B两地出发相向而行,两车中途相遇后,甲又用4小时到B地,乙又用9小时到A地,相遇时,甲车比乙车多行了90千米,求甲乙两车每小时各行多少千米?
【解答】根据行同一段时间的比4:相遇时间=相遇时间:9,得到相遇时间是6小时,可以知道甲乙的速度比是6:4=3:2, 那么相遇时甲乙行的路程比也是3:2,即相遇时甲行了90×3=270千米,乙行了90×2=180千米
【题目1】一次越野赛跑中,当小明跑了1600米时,小刚跑了1450米,此后两人分别以每秒a米和每秒b米匀速跑,又过100秒时小刚追上小明,200秒时小刚到达终点,300秒时小明到达终点,这次越野赛跑的全程为多少?
【解答】后来小刚的速度是小明的(300-100)÷(200-100)=2倍,所以小明每100秒行150米,因此全程是1600+150×3=2050米。
【题目2】甲乙两车分别从AB两地同时出发相向而行,出发时,甲和乙的速度比是4:3,相遇后,甲的速度减少10%,乙的速度增加20%。这样,当甲到达B地时,乙离A地还有17千米,那摩AB两地相距多少千米?
【解答】后来的速度比是(4×0.9):(3×1.2)=1:1,所以甲行3/7,乙还离A地4/7-3/7=1/7,即AB两地相距17÷1/7=119千米。
【题目3】从甲地到乙地全是山路,其中上山路程是下山路程的2/3,一辆汽车从甲地到乙地共行7小时,汽车上山速度是下山速度的一半,这辆这辆汽车从乙地返回甲地需要多少小时?
【解答】上山速度看作1,下山速度看作2,去时下山路程是1,上山路程是2/3,返回时上山路程是1,下山路程是2/3,所以有7÷(1÷2+2/3÷1)×(2/3÷2+1÷1)=8小时。
【题目4】甲乙两地,如果去时的速度提高25%,可比原定的时间提前6分钟到达,如果每小时少行10千米,则将多用1/3的时间才能到达,问两地的距离。
【解答】原定时间是6÷25%+6=30分钟,即1/2小时。原定速度是10÷1/3+10=40千米,则两地之间的距离是40×1/2=20千米。
【题目5】小丁骑自行车去小周家,先以12千米/小时的速度下山,然后又以9千米/小时的速度走过一段平路,到小周家共用了55分钟;后来时他用8千米/小时的速度通过平路,又以4千米/小时的速度上山回到了家,共用了90分钟,求小周家和小丁家的距离
【解答】去时速度坡路12平路9,返回坡路4平路8,如果返回坡路4×3=12平路8×3=24用去90÷3=30分钟。行平路速度9千米/时比24千米/时多用(55-30)÷60=5/12小时,所以平路的长度是5/12÷(1/9-1/24)=6千米,坡路就是(90/60-6/8)×4=3千米,两家相距6+3=9千米。
【题目6】甲乙丙三人同时从同一地点出发,沿一条线路追前面的小明,他们三人分别用9分,15分,20分别追上小明,已知甲每小时行24千米,已知甲每小时行24千米,乙每小时行20千米,丙每小时行多少千米?
【解答】小明分别与甲乙丙的速度差的比是1/9:1/15:1/20=20:12:9,很容易知道每份是(24-20)÷(20-12)=0.5,乙丙相差0.5×(12-9)=1.5千米,所以丙的速度是20-1.5=18.5千米/小时。
【题目7】网友求助:有一个圆形的池子,ABC三人同时由池子边的某一地点出发,绕池子跑步。AB向同一方向跑,C在途中遇上A,然后经过4分钟又遇上B。A每分钟跑400米。B每分钟跑200米。C每分钟跑150米。池子的周长是多少米?
【解答】设周长是单位1,AC相遇用的时间是1÷(400+150)=1/550,BC相遇用的时间是1÷(200+150)=1/350,那么周长就是4÷(1/350-1/550)=3850米。
【题目7】A的速度为每小时行30千米,B的速度为每小时行20千米,A和B同时从甲地出发到乙地,他们先后到乙地后又返回甲地……,如此往返来回运动。已知A与B第二次迎面相遇与A第二次追上B的两点相距45千米,甲乙两地相距多少千米?
【解答】第一次迎面相遇共行2个单程,第二次迎面相遇共行4个单程,相遇点距离甲地3/5×4-2=2/5;第一次追上A比B多行2个单程,即A6B4个单程,第二次追上A12B8个单程,偶数个单程都在甲地追上。因此甲乙两地相距45÷2/5=112.5千米。
【题目8】小明和小丁一起去上学,他们以5千米/时的速度行走,走了18分钟,小明突然想起忘带数学书,于是赶紧以10千米/时的速度往家跑,小丁仍以原速前进,若取书的时间忽略不计,小明仍以10千米/时的速度追赶小丁,多长时间才能追上?
【解答】后来小明的速度是小丁的10÷5=2倍,从返回到追上共用18×2÷(2-1)=36分钟。如果从拿到书到追上,共需要36-18÷2=27分钟。
【题目9】AB两地相距2400米,甲从A地.乙从B地同时出发,在A.B间往返长跑,甲每分钟跑300米,乙每分钟跑240米,在35分钟后停止运动。甲乙两人在第几次相遇时距A地最近?最近距离是多少米。
【解答】35分钟共行(300+240)×35=18900米,即18900÷2400=7个单程多2100米,分别在1,3,5,7个单程的时候会迎面相遇,速度比是300:240=5:4,要追上相遇至少需要9个单程。每次相遇分别距离A地是5/9,2-15/9=1/3,25/9-2=7/9,4-35/9=1/9,所以是第四次相遇的时候,距离是2400×1/9=800/3米。
【题目10】A,B,C三两车同时从甲地到乙地,按原来速度A应比B早到10分钟,在他们同时出发20分钟后,因为天降大雨,A的速度下降1/4,C速度下降1/5,B速度不变,结果三车同时到达乙地,问,C车行完全程原定要用多少分钟?
【解答】把20分钟后行的这段路的时间看作单位1,那么A、B、C原来行的时间分别是3/4、1、4/5,因为A比B少10分钟,所以后来行这段路用的时间是10÷(1-3/4)=40分钟,C原来就需要40×4/5+20=52分【题目1】甲乙二人同时从A地到B地。甲每小时走的路程比乙走的3倍还多1千米。甲到达B地后,停留45分钟,然后从B地返回,在途中遇乙。这时距他们出发的时间恰好过了3小时。如果A、B两地相距25.5千米。求甲乙二人的速度。
【解答】甲行了9/4小时,相当于乙行的9/4×3=27/4小时多9/4千米。乙每小时行(25.5×2-9/4)÷(27/4+3)=5千米,甲每小时行5×3+1=16千米。
【题目2】甲乙两人同时从A地出发,背向而行,分别前往B.C两地,已知甲乙两人每小时共行96千米,甲乙的速度比是9:7,两人恰好同时同时分别到达BC,乙立即用原速度返回,当乙行了40分钟后,甲在B地得到通知,要求立即返回并且要与乙同时到达A地,甲返回时把原速度提高了20%,这样两人同时到达A地,问B、C间的路程。
【解答】相遇时间是40/60÷20%+40/60=4小时,两地距离96×4=384千米。
【题目3】小明家和小画家在一条之路上,两人从家中同时出发相向而行,在离小明家500米处第一次相遇,相遇后两人保持原速继续前进,到达对方家后立即返回,在离小华家600米处第二次相遇,求两家的距离是多少米?
【解答】共行一个单程小明行500米,第二次相遇共行三个单程,小明行了500×3=1500米,比一个单程多行了600米,所以一个单程是1500-600=900米。
【题目4】甲乙两车同时从A、B两地相向而行,途中相遇,相遇时距A地90千米。相遇后两车继续以原速前进,到达目的地后立即返回,在途中第二次相遇。这时相遇点距A地50千米。已知从第一次相遇到第二次相遇的时间是4小时,求甲乙两地的速度?
【解答】同样的道理,(90×3+50)÷2=160千米。
【题目5】客货两车从甲乙两地同时相向而行分别到达两地立即反回,第二次相遇时,客车距乙地48米。已知客货两车速度比为5:4,甲乙相距多少千米?
【解答】第一次相遇共行一个单程,客车行5/9个单程,第二次相遇共行三个单程,客车行5/9×3=5/3个单程,超过了5/3-1=2/3个单程,所以一个单程是48÷2/3=72千米。
【题目6】甲、乙二人同时从A、B两地相向而行,两人相遇的地点距离A地180千米。第二天,甲、乙二人又同时从A、B两地相向而行,甲把自己的速度提高到原来4倍,乙的速度不变,两人相遇的地点恰好又距离B地180千米,第三天,甲、乙二人还是同时从A,B两地相向而行,甲的速度与第一天速度相同,乙把自己的速度提高到原来的4倍,那么这次他们相遇的地点与A、B两地中点之间的距离是多少千米?
【解答】根据条件可以知道,乙原来的速度是甲第一天和第二天速度的比例中项。可以知道甲乙原速的比是1:2,所以全程是180×(2+1)=540千米。第三天的速度比就是1:8,相遇点距离中点是(1/2-1/9)×540=210千米。
【题目7】甲乙丙三个车站在同一条公路上,且他们之间路程相等,A,B两人分别从甲丙两站相向而行,A在超过乙路150米处和B相遇,然后两人继续前行,A在到丙站后,立即返回,在经过乙站450米处,追上了B。求甲丙两站的距离。
【解答】追上时A行的路程是相遇时的3倍,那么B在追上时行的总路程也是相遇时行的路程的3倍,所以甲丙两站的距离是(450+150×3)÷(1/2×3-1/2)=900米。
【题目8】B处的兔子和A处的狗相距56米。兔子从B处逃跑,狗同时从A处跳出追兔子,狗一跳2米,狗跳3次的时间和兔子跳4次的时间相同。兔子跳出112米后被狗追上,问兔子一跳多少米?
【解答】狗和兔子的速度比是(112+56):112=3:2,狗跳3次跳了2×3=6米,兔子就跳6×2/3=4米,所以兔子每跳一次4÷4=1米
【题目9】甲乙两车分别从A、B两地同时开出,相对而行,4小时后甲车行了全程的1/4,乙车行的路程比全程的12.5%少60千米,甲乙两车继续行驶735千米相遇。求AB两地相距多少千米?
【解答】735-60=675千米占全程的1-1/4-12.5%=5/8,所以两地之间的距离是675÷5/8=1080千米。
【题目10】火车每分钟行1050米,从车头与一个路标并列到车尾离开这个路标3分钟后一辆摩托车以每分钟1200米的速度从这个路标出发,摩托车出发25分钟后,与火车的车头正好并列,求这列火车的长。
【解答】摩托车行了1200×25=30000米,车尾行了1050×(25+3)=29400米。所以火车长30000-29400=600米。
钟。
【题目1】船顺流航行速度是每小时8千米,逆流而上的速度是每时7千米,两船同时从同一地点出发,甲船顺流而下,然后返回,乙船逆流而上,然后返回,经过2时同时回到出发点,这2小时中,有多少时间,甲乙两船航行方向是相同的?
【解答】2÷(7+8)=2/15小时
********************************
【题目2】在同一路线上有ABCD四个人,每人的速度固定不变。已知A在12时追上C,14时时与D迎面相遇,16时时与B迎面相遇。而B在17时时与C迎面相遇,18时追上D,那么D在几时迎面遇到C。
【解答】把12时AB的距离看作单位1,四人速度分别用ABCD来表示。A+B=1/4,B+C=1/5。2(A+D)+6(B-D)=4(A+B),得出B-D=1/2(A+B)=1/2×1/4=1/8,12时C和D相距2×(1/4-1/8)=1/4,C+D=1/5-1/8=3/40,所以需要的时间是1/4÷3/40=10/3小时,即在15时20分的时候C和D相遇。
********************************
【题目3】一条河上有甲、乙两个码头,甲在乙的上游50千米处。客船和货船分别从甲乙两个码头同时出发向上游行使。两船的静水速度相同且始终保持不变。客船出发时有一物品从船上掉入水中,10分钟后此物品距离客船5千米。客船在行使20千米后折回向下游追赶此物,追上时恰好与货船相遇。求水流的速度。
【解答】船静水每小时行5÷10/60=30千米,客船从返回到与货船相遇的时间是50÷(30×2)=5/6小时,由于这个时候客船也追上了物品,所以客船行逆水行20千米就用了5/6小时,那么逆水每小时行20÷5/6=24千米,水流速度就是每小时30-24=6千米。
********************************
【题目4】某校在400米环行跑道上进行1万米比赛,甲、乙两名运动员同时起跑后乙的速度始终保持不变,开始时甲比乙慢,在第15分钟时甲加快速度并保持这个速度不变,在第18分钟时甲追上乙并且开始超过乙。在第23分钟时甲再次追上乙,而在23分50秒时甲到达终点。那么乙跑完全程所用的时间是多少分钟?
【解答】后来甲23-18=5分钟就超过乙一圈,又行50秒就多行50/60÷5=1/6圈。10000米是25圈,乙用23又5/6分钟行了25-1-1/6=23又5/6圈,所以乙每分钟行1圈。所以乙行完全程需要25分钟。
********************************
【题目5】客车和货车同时从A地出发反向行驶,5小时后,客车到达甲地,货车离乙地还有90千米,已知A地到甲地的距离与甲乙两地间的距离比是1:3,而且货车与客车的速度比是5:3,甲乙两地间的距离是多少千米?
【解答】客车行1份到甲地,货车就行5/3份距离乙地90千米,这90千米就是3-1-5/3=1/3份,所以每份是90÷1/3=270千米,那么甲乙两地间的距离是270×3=810千米。
********************************
【题目6】甲乙二人分别从A,B两地同时出发相向而行,5小时后相遇在C点。如果甲速度不变,乙每小时多行4千米,且甲乙还从A,B两地同时出发相向而行,则相遇点D距C点10千米;如果乙速度不变,甲每小时多行3千米,且甲乙还从A,B两地同时出发相向而行,则相遇点E距C点5千米,问甲原来的速度是多少?
【解答】根据第一种假设,甲如果行到C点,甲需要再行10千米,乙需要再行4×5-10=10千米,在同样的时间内,甲乙行的路程相等,说明甲乙此时的速度相等,也就说明原来甲每小时比乙多行4千米。根据第二种假设,乙行到C还要走5千米,甲就还要行3×5-5=10千米,相同的时间,甲行的路程是乙的10÷5=2倍,说明此时甲的速度是乙的2倍,也就是甲每小时多行3千米,就是乙的2倍。可以得出乙每小时行是3+4=7千米,甲每小时行7+4=11千米。
********************************
【题目7】一只船从甲港到乙港往返一次共用6小时,去时顺水比回来时每小时多行10千米,因此前3小时比后3小时多行25千米,这只船在静水中的速度是多少千米每小时,水流速度呢?
【解答】水流速度是10÷2=5千米/时,顺水时间是25÷10=2.5小时,逆水时间是6-2.5=3.5小时,逆水每小时行2.5×10÷(3.5-2.5)=25千米,静水每小时行25+5=30千米。
【题目8】一条公路上有相距120千米的两个汽车站A和B,一天24小时中每逢整点就有一辆汽车从A站出发开往B站,同时也有一辆汽车从B站出发开往A站,所有汽车的速度都一样。有一人早上7点钟骑自行车自A站出发沿公路向B站前进。已知在途中有8辆从A站驶往B站的汽车超过他,还有一辆与他同时到达B站。如果这个人在中途还遇到14辆从B站驶往A站的汽车,那么骑车的人平均时速最少是多少千米?
【题目9】一支解放军队伍全长900米,排尾的通讯员骑摩托车从排尾赶到排头将电报交给排头的首长,然后以原速的1/8回到排尾将命令传达给指挥官,这时队伍共前进了900米,已知队伍匀速前进,当通讯员赶到排头时,解放军队伍已经行走了多少米?这段时间通讯员共走了多少米?
【解答】设通讯员的速度是队伍速度的x倍,则有900÷(x-1)+900÷(x/8+1)=900,解得x=4,所以通讯员赶到排头时,队伍已经行走了900÷(4-1)=300米。通讯员共走了600×4÷8+300×4=1500米。
展开全部
昻?跟我的问题一样~
我的是:
解:设甲乙两地相距x千米。
(x/6+x/8)乘3=x-70
x=560
我的是:
解:设甲乙两地相距x千米。
(x/6+x/8)乘3=x-70
x=560
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
( ⊙o⊙ )哇
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1000
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询