展开全部
取BF中点P,连接CP交AD于Q
则:AF=BF/2=BP
因为:AE=CD,AC=AB,∠C=∠A=∠B
所以:△ABE≌△ADC,△ABD≌△BCE
所以:∠AEB=∠ADC,∠BAF=∠CBE
所以:△AEF∽△ADC
所以:∠C=∠AFE=PFQ=60°
因为:AF=BP,∠BAF=∠CBE,AB=BC
所以:△ABF≌△BPC
所以:BF=PC,∠AFB=∠BPC
因为:∠AFE=180°-∠AFB=180°-∠BPC=∠QPF=60°
所以:三角形PQF为等边三角形FQ=PQ=PC/2
所以:FQ为RT三角形PQF斜边中线
所以:CF垂直BE
另外:
在AB上取点G,使BG=CD=AE,连接GC与BE交于H,与AD交于I
因为 三角形ABC等边
所以 BC=AC=AB,角ABC=角BCA=角CAB=60度
因为 BG=CD=AE
所以 三角形GBC全等于三角形DCA全等于三角形EAB
所以 角BCG=角CAD=角ABE
因为 角ABC=角BCA=角CAB=60度
所以 角EBC=角GCA=角DAB
因为 BC=AC=AB,角BCG=角CAD=角ABE
所以 三角形BCH全等于三角形CAI全等于三角形AFB
所以 BF=CH=AI,BH=CI=AF
因为 AF=1/2BF
所以 HI=IC=FI=1/2BF
所以 角CFH=90度
所以 CF垂直于BE
则:AF=BF/2=BP
因为:AE=CD,AC=AB,∠C=∠A=∠B
所以:△ABE≌△ADC,△ABD≌△BCE
所以:∠AEB=∠ADC,∠BAF=∠CBE
所以:△AEF∽△ADC
所以:∠C=∠AFE=PFQ=60°
因为:AF=BP,∠BAF=∠CBE,AB=BC
所以:△ABF≌△BPC
所以:BF=PC,∠AFB=∠BPC
因为:∠AFE=180°-∠AFB=180°-∠BPC=∠QPF=60°
所以:三角形PQF为等边三角形FQ=PQ=PC/2
所以:FQ为RT三角形PQF斜边中线
所以:CF垂直BE
另外:
在AB上取点G,使BG=CD=AE,连接GC与BE交于H,与AD交于I
因为 三角形ABC等边
所以 BC=AC=AB,角ABC=角BCA=角CAB=60度
因为 BG=CD=AE
所以 三角形GBC全等于三角形DCA全等于三角形EAB
所以 角BCG=角CAD=角ABE
因为 角ABC=角BCA=角CAB=60度
所以 角EBC=角GCA=角DAB
因为 BC=AC=AB,角BCG=角CAD=角ABE
所以 三角形BCH全等于三角形CAI全等于三角形AFB
所以 BF=CH=AI,BH=CI=AF
因为 AF=1/2BF
所以 HI=IC=FI=1/2BF
所以 角CFH=90度
所以 CF垂直于BE
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询