设函数f(x)在x0处有三阶导数,且f"(x0)=0,f'''(x0)≠0,试证明点(x0,f(x0))必为拐点
2010-01-20
展开全部
f(x)在x0三阶可导,因此二阶导函数f"(x)在x0的附近连续。
考虑二阶导函数f"(x),其导数f'''(xo)≠0,因此在x0的附近单调;而f''(xo)=0,因此在x0的两侧二阶导函数变号。由定义,此点为拐点。
考虑二阶导函数f"(x),其导数f'''(xo)≠0,因此在x0的附近单调;而f''(xo)=0,因此在x0的两侧二阶导函数变号。由定义,此点为拐点。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询