3个回答
展开全部
七年级上册】 数学复习提纲
第一章 有理数
1.1 正数与负数
在以前学过的0以外的数前面加上负号“—”的数叫负数(negative number)。
与负数具有相反意义,即以前学过的0以外的数叫做正数(positive number)(根据需要,有时在正数前面也加上“+”)。
1.2 有理数
正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。
整数和分数统称有理数(rational number)。
通常用一条直线上的点表示数,这条直线叫数轴(number axis)。
数轴三要素:原点、正方向、单位长度。
在直线上任取一个点表示数0,这个点叫做原点(origin)。
只有符号不同的两个数叫做互为相反数(opposite number)。(例:2的相反数是-2;0的相反数是0)
数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。
1.3 有理数的加减法
有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
3.一个数同0相加,仍得这个数。
有理数减法法则:减去一个数,等于加这个数的相反数。
1.4 有理数的乘除法
有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
乘积是1的两个数互为倒数。
有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。 mì
求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(base number),n叫做指数(exponent)。
负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。
把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法。
从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significant digit)。
第二章 一元一次方程
2.1 从算式到方程
方程是含有未知数的等式。
方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程(linear equation with one unknown)。
解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解(solution)。
等式的性质:
1.等式两边加(或减)同一个数(或式子),结果仍相等。
2.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
2.2 从古老的代数书说起——一元一次方程的讨论(1)
把等式一边的某项变号后移到另一边,叫做移项。
第三章 图形认识初步
3.1 多姿多彩的图形
几何体也简称体(solid)。包围着体的是面(surface)。
3.2 直线、射线、线段
线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。
连接两点间的线段的长度,叫做这两点的距离。
3.3 角的度量
1度=60分 1分=60秒 1周角=360度 1平角=180度
3.4 角的比较与运算
如果两个角的和等于90度(直角),就说这两个叫互为余角(compiementary angle),即其中每一个角是另一个角的余角。
如果两个角的和等于180度(平角),就说这两个叫互为补角(supplementary angle),即其中每一个角是另一个角的补角。
等角(同角)的补角相等。
等角(同角)的余角相等。
第四章 数据的收集与整理
收集、整理、描述和分析数据是数据处理的基本过程。
第一章 有理数
1.1 正数与负数
在以前学过的0以外的数前面加上负号“—”的数叫负数(negative number)。
与负数具有相反意义,即以前学过的0以外的数叫做正数(positive number)(根据需要,有时在正数前面也加上“+”)。
1.2 有理数
正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。
整数和分数统称有理数(rational number)。
通常用一条直线上的点表示数,这条直线叫数轴(number axis)。
数轴三要素:原点、正方向、单位长度。
在直线上任取一个点表示数0,这个点叫做原点(origin)。
只有符号不同的两个数叫做互为相反数(opposite number)。(例:2的相反数是-2;0的相反数是0)
数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。
1.3 有理数的加减法
有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
3.一个数同0相加,仍得这个数。
有理数减法法则:减去一个数,等于加这个数的相反数。
1.4 有理数的乘除法
有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
乘积是1的两个数互为倒数。
有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。 mì
求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(base number),n叫做指数(exponent)。
负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。
把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法。
从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significant digit)。
第二章 一元一次方程
2.1 从算式到方程
方程是含有未知数的等式。
方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程(linear equation with one unknown)。
解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解(solution)。
等式的性质:
1.等式两边加(或减)同一个数(或式子),结果仍相等。
2.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
2.2 从古老的代数书说起——一元一次方程的讨论(1)
把等式一边的某项变号后移到另一边,叫做移项。
第三章 图形认识初步
3.1 多姿多彩的图形
几何体也简称体(solid)。包围着体的是面(surface)。
3.2 直线、射线、线段
线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。
连接两点间的线段的长度,叫做这两点的距离。
3.3 角的度量
1度=60分 1分=60秒 1周角=360度 1平角=180度
3.4 角的比较与运算
如果两个角的和等于90度(直角),就说这两个叫互为余角(compiementary angle),即其中每一个角是另一个角的余角。
如果两个角的和等于180度(平角),就说这两个叫互为补角(supplementary angle),即其中每一个角是另一个角的补角。
等角(同角)的补角相等。
等角(同角)的余角相等。
第四章 数据的收集与整理
收集、整理、描述和分析数据是数据处理的基本过程。
展开全部
1、一缸水,用去1/2和5桶,还剩30%,这缸水有多少桶?
解: 1-1/2-30% 1÷20%=5
=50%-30% 5×5=25(桶)
=20%
答:这缸水有25桶.
2、一根钢管长10米,第一次截去它的7/10,第二次又截去余下的1/3,还剩多少米?
解: 1-(7/10+1/3) 10×11/30=11/3
=1-19/30
=11/30
答:还剩11/3米.
3、有一个圆环,内圆的周长是31.4厘米,外圆的周长是62.8厘米,圆环的宽是多少厘米?
解: 31.4÷3.14÷2 62.8÷3.14÷2 10-5=5(cm)
=10÷2 =20÷2
=5(cm) =10(cm)
答:圆环的宽是5厘米.
4、师徒两人合做一批零件,徒弟做了总数的2/7,比师傅少做21个,这批零件有多少个?
解: 1-2/7-2/7 21×7=147(个)
=3/7-2/7
=1/7
答:这批零件有147个.
5、仓库里有一批化肥,第一次取出总数的2/5,第二次取出总数的1/3少12袋,这时仓库里还剩24袋,两次共取出多少袋?
解: 设共有x袋. 135-24=111(袋)
x-2/5x-1/3x-12=24
3/5x-1/3x-12=24
4/15x=24+12
4/15x=36 答:两次共取出111袋.
x=135
6、小丽的妈妈在银行里存入人民币5000元,存期一年,年利率2.25%,取款时由银行代扣代收20%的利息税,到期时,所交的利息税为多少元?
解: 5000×2.25%×20%
=112.5×20%
=22.5(元)
答:所交的利息税为22.5元.
7、张平有500元钱,打算存入银行两年.可以有两种储蓄办法,一种是存两年期的,年利率是2.43%;一种是先存一年期的,年利率是2.25%,第一年到期时再把本金和税后利息取出来合在一起,再存入一年.选择哪种办法得到的税后利息多一些?
解: 500×2.43%×2 500×2.43%+500 512.15×2.43%=12.445245(元)
=12.15×2 =12.15+500
=24.3(元) =512.15(元)
答:第一种办法得到的税后利息多一些.
8、饲养组有黑兔60只,白兔比黑兔多1/5,白兔有多少只?
解: 60+60×1/5
=60+12
=72(只)
答:白兔有72只.
9、学校要挖一条长80米的下水道,第一天挖了全长的1/4,第二天挖了全长的1/2,两天共挖了多少米?还剩下多少米?
解: 80×1/4=20(米) 20+40=60(米)
80×1/2=40(米) 80-60=20(米)
答:两天共挖了60米,还剩下20米.
10、一个长方形的周长是24厘米 ,长与宽的比是 2:1 ,这个长方形的面积是多少平方厘米?
解: 24÷2=12(cm) 4×8=32(平方厘米)
2:1=8:4
答:这个长方形的面积是32平方厘米.
11、一个长方体棱长总和为 96 厘米 ,长、宽、高的比是 3∶2 ∶1 ,这个长方体的体积是多少?
解: 96÷2=48(cm) 24×16×8=3072(cm)
3:2:1=24:16:8
答:这个长方体的体积是3072cm.
12、某工厂四月份下半月用水5400吨,比上半月节约20%,上半月用水多少吨?
解: 5400-5400×20%
=5400-1080
=4320(吨)
答:上半月用水4320吨.
13、某校参加电脑兴趣小组的有42人,其中男、女生人数的比是 4 ∶3,男生有多少人?
解: 4:3=24:18
答:男生有24人.
14、一本200页的书,读了20%,还剩下几页没读?
解: 200-200×20%
=200-40
=160(页) 答:还剩下160页没读.
解: 1-1/2-30% 1÷20%=5
=50%-30% 5×5=25(桶)
=20%
答:这缸水有25桶.
2、一根钢管长10米,第一次截去它的7/10,第二次又截去余下的1/3,还剩多少米?
解: 1-(7/10+1/3) 10×11/30=11/3
=1-19/30
=11/30
答:还剩11/3米.
3、有一个圆环,内圆的周长是31.4厘米,外圆的周长是62.8厘米,圆环的宽是多少厘米?
解: 31.4÷3.14÷2 62.8÷3.14÷2 10-5=5(cm)
=10÷2 =20÷2
=5(cm) =10(cm)
答:圆环的宽是5厘米.
4、师徒两人合做一批零件,徒弟做了总数的2/7,比师傅少做21个,这批零件有多少个?
解: 1-2/7-2/7 21×7=147(个)
=3/7-2/7
=1/7
答:这批零件有147个.
5、仓库里有一批化肥,第一次取出总数的2/5,第二次取出总数的1/3少12袋,这时仓库里还剩24袋,两次共取出多少袋?
解: 设共有x袋. 135-24=111(袋)
x-2/5x-1/3x-12=24
3/5x-1/3x-12=24
4/15x=24+12
4/15x=36 答:两次共取出111袋.
x=135
6、小丽的妈妈在银行里存入人民币5000元,存期一年,年利率2.25%,取款时由银行代扣代收20%的利息税,到期时,所交的利息税为多少元?
解: 5000×2.25%×20%
=112.5×20%
=22.5(元)
答:所交的利息税为22.5元.
7、张平有500元钱,打算存入银行两年.可以有两种储蓄办法,一种是存两年期的,年利率是2.43%;一种是先存一年期的,年利率是2.25%,第一年到期时再把本金和税后利息取出来合在一起,再存入一年.选择哪种办法得到的税后利息多一些?
解: 500×2.43%×2 500×2.43%+500 512.15×2.43%=12.445245(元)
=12.15×2 =12.15+500
=24.3(元) =512.15(元)
答:第一种办法得到的税后利息多一些.
8、饲养组有黑兔60只,白兔比黑兔多1/5,白兔有多少只?
解: 60+60×1/5
=60+12
=72(只)
答:白兔有72只.
9、学校要挖一条长80米的下水道,第一天挖了全长的1/4,第二天挖了全长的1/2,两天共挖了多少米?还剩下多少米?
解: 80×1/4=20(米) 20+40=60(米)
80×1/2=40(米) 80-60=20(米)
答:两天共挖了60米,还剩下20米.
10、一个长方形的周长是24厘米 ,长与宽的比是 2:1 ,这个长方形的面积是多少平方厘米?
解: 24÷2=12(cm) 4×8=32(平方厘米)
2:1=8:4
答:这个长方形的面积是32平方厘米.
11、一个长方体棱长总和为 96 厘米 ,长、宽、高的比是 3∶2 ∶1 ,这个长方体的体积是多少?
解: 96÷2=48(cm) 24×16×8=3072(cm)
3:2:1=24:16:8
答:这个长方体的体积是3072cm.
12、某工厂四月份下半月用水5400吨,比上半月节约20%,上半月用水多少吨?
解: 5400-5400×20%
=5400-1080
=4320(吨)
答:上半月用水4320吨.
13、某校参加电脑兴趣小组的有42人,其中男、女生人数的比是 4 ∶3,男生有多少人?
解: 4:3=24:18
答:男生有24人.
14、一本200页的书,读了20%,还剩下几页没读?
解: 200-200×20%
=200-40
=160(页) 答:还剩下160页没读.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
第一章 有理数
1.1 正数与负数
在以前学过的0以外的数前面加上负号“—”的数叫负数。
与负数具有相反意义,即以前学过的0以外的数叫做正数(根据需要,有时在正数前面也加上“+”)。
1.2 有理数
正整数、0、负整数统称整数,正分数和负分数统称分数。
整数和分数统称有理数。
通常用一条直线上的点表示数,这条直线叫数轴。
数轴三要素:原点、正方向、单位长度。
在直线上任取一个点表示数0,这个点叫做原点。
只有符号不同的两个数叫做互为相反。(例:2的相反数是-2;0的相反数是0)
数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。
1.3 有理数的加减法
有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
3.一个数同0相加,仍得这个数。
有理数减法法则:减去一个数,等于加这个数的相反数。
1.4 有理数的乘除法
有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
乘积是1的两个数互为倒数。
有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。 mì
求n个相同因数的积的运算,叫乘方,乘方的结果叫幂。在a的n次方中,a叫做底数,n叫做指数。
负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。
把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法。
从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字。
第二章 一元一次方程
2.1 从算式到方程
方程是含有未知数的等式。
方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程。
解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程。
等式的性质:
1.等式两边加(或减)同一个数(或式子),结果仍相等。
2.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
2.2 从古老的代数书说起——一元一次方程的讨论(1)
把等式一边的某项变号后移到另一边,叫做移项。
第三章 图形认识初步
3.1 多姿多彩的图形
几何体也简称体。包围着体的是面。
3.2 直线、射线、线段
线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。
连接两点间的线段的长度,叫做这两点的距离。
3.3 角的度量
1度=60分 1分=60秒 1周角=360度 1平角=180度
3.4 角的比较与运算
如果两个角的和等于90度(直角),就说这两个叫互为余角,即其中每一个角是另一个角的余角。
如果两个角的和等于180度(平角),就说这两个叫互为补角,即其中每一个角是另一个角的补角。
等角(同角)的补角相等。
等角(同角)的余角相等。
第四章 数据的收集与整理
收集、整理、描述和分析数据是数据处理的基本过程。
1.1 正数与负数
在以前学过的0以外的数前面加上负号“—”的数叫负数。
与负数具有相反意义,即以前学过的0以外的数叫做正数(根据需要,有时在正数前面也加上“+”)。
1.2 有理数
正整数、0、负整数统称整数,正分数和负分数统称分数。
整数和分数统称有理数。
通常用一条直线上的点表示数,这条直线叫数轴。
数轴三要素:原点、正方向、单位长度。
在直线上任取一个点表示数0,这个点叫做原点。
只有符号不同的两个数叫做互为相反。(例:2的相反数是-2;0的相反数是0)
数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。
1.3 有理数的加减法
有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
3.一个数同0相加,仍得这个数。
有理数减法法则:减去一个数,等于加这个数的相反数。
1.4 有理数的乘除法
有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
乘积是1的两个数互为倒数。
有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。 mì
求n个相同因数的积的运算,叫乘方,乘方的结果叫幂。在a的n次方中,a叫做底数,n叫做指数。
负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。
把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法。
从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字。
第二章 一元一次方程
2.1 从算式到方程
方程是含有未知数的等式。
方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程。
解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程。
等式的性质:
1.等式两边加(或减)同一个数(或式子),结果仍相等。
2.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
2.2 从古老的代数书说起——一元一次方程的讨论(1)
把等式一边的某项变号后移到另一边,叫做移项。
第三章 图形认识初步
3.1 多姿多彩的图形
几何体也简称体。包围着体的是面。
3.2 直线、射线、线段
线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。
连接两点间的线段的长度,叫做这两点的距离。
3.3 角的度量
1度=60分 1分=60秒 1周角=360度 1平角=180度
3.4 角的比较与运算
如果两个角的和等于90度(直角),就说这两个叫互为余角,即其中每一个角是另一个角的余角。
如果两个角的和等于180度(平角),就说这两个叫互为补角,即其中每一个角是另一个角的补角。
等角(同角)的补角相等。
等角(同角)的余角相等。
第四章 数据的收集与整理
收集、整理、描述和分析数据是数据处理的基本过程。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询