“线速度”是物体上任一点对定轴作圆周运动时的速度。它的一般定义是质点(或物体上各点)作曲线运动(包括圆周运动)时所具有的即时速度。
计算公式是:v=S/△t,也是v=2πr/T。
在匀速圆周运动中,线速度的大小等于运动质点通过的弧长(S)和通过这段弧长所用的时间(△t)的值。在匀速圆周运动中,线速度的大小虽不改变,但它的方向时刻在改变。
线速度的方向沿运动轨道的切线方向,故又称切向速度。它是描述作曲线运动的质点运动快慢和方向的物理量。物体上各点作曲线运动时所具有的即时速度,其方向沿运动轨道的切线方向。
扩展资料:
圆周运动的快慢可以用物体通过的弧长与所用时间的比值来度量。若物体由M向N运动,某时刻t经过A点。为了描述经过A点附近时运动的快慢,可以从此刻开始,取一段很短的时间△t,物体在这段时间内由A运动到B,通过的弧长为△L。比值△L/△t反映了物体运动的快慢,叫做线速度,用v表示,即v=△L/△t。
线速度也有平均值和瞬时值之分。如果所取的时间间隔很小很小,这样得到的就是瞬时线速度。
线速度是矢量,有大小和方向,做圆周运动的物体,它的线速度方向时刻改变,并始终指向该点的切线方向。
物体运动角位移的时间变化率叫瞬时角速度(亦称即时角速度),单位是弧度/秒(rad/s),方向用右手螺旋定则决定。
匀速圆周运动中的角速度:对于匀速圆周运动,角速度ω是一个恒量,可用运动物体与圆心联线所转过的角位移Δθ和所对应的时间Δt之比表示ω=△θ/△t,还可以通过V(线速度)/R(半径)求出。
由此可见,刚体中质点的速度可分解成两项-刚体中某固定参考点的速度再加上一项包含该质点相对于此参考点的角速度的外积。相较于O'点对于O点的角速度,这个角速度是 "自旋" 角速度。
很重要的是,每个在刚体中的质点具有相同的自旋角速度,此自旋角速度与刚体上或是实验室坐标系统的原点的选择无关。换句话说,这是一个刚体特质所具有的真实物理量,与坐标系统的选择无关。然而刚体上的参考点相对于实验室坐标原点的角速度则和坐标系统的选择有关,为了方便起见,通常选择该刚体的质心当作刚体坐标系统的原点,这将大大地简化以数学形式在刚体角动量的上的表达。
参考链接:百度百科-线速度
2021-12-09 广告
v=s/t(s是弧长)=2paiR/T(T是周期)=2paiRf(f是频率)=2paiRn(n是转速)=RW(W是角速度)
物体上任一点对定轴作圆周运动时的速度称为“线速度”(linear velocity)。它的一般定义是质点(或物体上各点)作曲线运动(包括圆周运动)时所具有的即时速度。它的方向沿运动轨道的切线方向,故又称切向速度。它是描述作曲线运动的质点运动快慢和方向的物理量。物体上各点作曲线运动时所具有的即时速度,其方向沿运动轨道的切线方向。
扩展资料:
圆周运动的快慢可以用物体通过的弧长与所用时间的比值来度量。若物体由M向N运动,某时刻t经过A点。为了描述经过A点附近时运动的快慢,可以从此刻开始,取一段很短的时间△t,物体在这段时间内由A运动到B,通过的弧长为△L。比值△L/△t反映了物体运动的快慢,叫做线速度,用v表示,即v=△L/△t。
线速度也有平均值和瞬时值之分。如果所取的时间间隔很小很小,这样得到的就是瞬时线速度。
注意,当△t足够小时,圆弧AB几乎成了直线,AB弧的长度与AB线段的长度几乎没有差别,此时,△l也就是物体由A到B的位移。因此,这里的v其实就是直线运动中的瞬时速度,不过如今用来描述圆周运动而已。
线速度是矢量,有大小和方向,做圆周运动的物体,它的线速度方向时刻改变,并始终指向该点的切线方向。
在匀速圆周运动中,线速度的大小等于运动质点通过的弧长(S)和通过这段弧长所用的时间(△t)的值。即v=S/△t,也是v=2πr/T,在匀速圆周运动中,线速度的大小虽不改变,但它的方向时刻在改变。它和角速度的关系是v=ω*r;v=ωr=2πrf=2πnr=2πr/T
参考资料:百度百科-线速度
【概念】
物体上任一点对定轴作圆周运动时的速度称为“线速度”(linear velocity)。它的一般定义是质点(或物体上各点)作曲线运动(包括圆周运动)时所具有的即时速度。它的方向沿运动轨道的切线方向,故又称切向速度。它是描述作曲线运动的质点运动快慢和方向的物理量。物体上各点作曲线运动时所具有的即时速度,其方向沿运动轨道的切线方向。
【相关公式】
在匀速圆周运动中,线速度的大小等于运动质点通过的弧长(S)和通过这段弧长所用的时间(△t)的值。即v=S/△t,也是v=2πr/T,在匀速圆周运动中,线速度的大小虽不改变,但它的方向时刻在改变。它和角速度的关系是v=ω*r
v=ωr=2πrf=2πnr=2πr/T
当运动质点做圆周运动的同时也做另一种平动时,例如汽车车轮上的某一定点,此时该质点的线速度为做圆周运动的线速度(w*r)与平动运动的速度(v')的矢量之和:v=w*r+v'
v=Δl/Δt
【基本介绍】
圆周运动的快慢可以用物体通过的弧长与所用时间的比值来度量。若物体由M向N运动,某时刻t经过A点。为了描述经过A点附近时运动的快慢,可以从此刻开始,取一段很短的时间△t,物体在这段时间内由A运动到B,通过的弧长为△L。比值△L/△t反映了物体运动的快慢,叫做线速度,用v表示,即v=△L/△t。
线速度也有平均值和瞬时值之分。如果所取的时间间隔很小很小,这样得到的就是瞬时线速度。
注意,当△t足够小时,圆弧AB几乎成了直线,AB弧的长度与AB线段的长度几乎没有差别,此时,△l也就是物体由A到B的位移。因此,这里的v其实就是直线运动中的瞬时速度,不过如今用来描述圆周运动而已。
线速度是矢量,有大小和方向,做圆周运动的物体,它的线速度方向时刻改变,并始终指向该点的切线方向。
“线速度”是物体上任一点对定轴作圆周运动时的速度。它的一般定义是质点(或物体上各点)作曲线运动(包括圆周运动)时所具有的即时速度。
计算公式是:v=S/△t,也是v=2πr/T。
在匀速圆周运动中,线速度的大小等于运动质点通过的弧长(S)和通过这段弧长所用的时间(△t)的值。在匀速圆周运动中,线速度的大小虽不改变,但它的方向时刻在改变。
线速度的方向沿运动轨道的切线方向,故又称切向速度。它是描述作曲线运动的质点运动快慢和方向的物理量。物体上各点作曲线运动时所具有的即时速度,其方向沿运动轨道的切线方向。
扩展资料:
圆周运动的快慢可以用物体通过的弧长与所用时间的比值来度量。若物体由M向N运动,某时刻t经过A点。为了描述经过A点附近时运动的快慢,可以从此刻开始,取一段很短的时间△t,物体在这段时间内由A运动到B,通过的弧长为△L。比值△L/△t反映了物体运动的快慢,叫做线速度,用v表示,即v=△L/△t。
线速度也有平均值和瞬时值之分。如果所取的时间间隔很小很小,这样得到的就是瞬时线速度。
线速度是矢量,有大小和方向,做圆周运动的物体,它的线速度方向时刻改变,并始终指向该点的切线方向。
物体运动角位移的时间变化率叫瞬时角速度(亦称即时角速度),单位是弧度/秒(rad/s),方向用右手螺旋定则决定。
匀速圆周运动中的角速度:对于匀速圆周运动,角速度ω是一个恒量,可用运动物体与圆心联线所转过的角位移Δθ和所对应的时间Δt之比表示ω=△θ/△t,还可以通过V(线速度)/R(半径)求出。
由此可见,刚体中质点的速度可分解成两项-刚体中某固定参考点的速度再加上一项包含该质点相对于此参考点的角速度的外积。相较于O'点对于O点的角速度,这个角速度是 "自旋" 角速度。
很重要的是,每个在刚体中的质点具有相同的自旋角速度,此自旋角速度与刚体上或是实验室坐标系统的原点的选择无关。换句话说,这是一个刚体特质所具有的真实物理量,与坐标系统的选择无关。然而刚体上的参考点相对于实验室坐标原点的角速度则和坐标系统的选择有关,为了方便起见,通常选择该刚体的质心当作刚体坐标系统的原点,这将大大地简化以数学形式在刚体角动量的上的表达。
下面是一些常见情况下线速度的计算公式:
1. 直线运动中的线速度计算公式
在直线运动中,物体的线速度等于它在单位时间内通过的路程长度。因此,线速度的计算公式可以表示为:
v = s / t
其中,v 表示线速度,s 表示物体在单位时间内通过的路程长度,t 表示单位时间。
2、圆周运动中的线速度计算公式
在圆周运动中,物体的线速度等于物体沿圆周运动的弧长与时间的比值。因此,线速度的计算公式可以表示为:
v = s / t = 2πr / T
其中,v 表示线速度,s 表示物体在单位时间内通过的路程长度(即圆周上的弧长),t 表示单位时间,r 表示圆的半径,T 表示物体完成一圈运动所需的时间。
3、自转运动中的线速度计算公式
在自转运动中,物体的线速度等于物体上某一点沿着自转轴的线速度。因此,线速度的计算公式可以表示为:
v = ωr
其中,v 表示线速度,ω 表示物体的角速度,r 表示物体上某一点到自转轴的距离。
这些公式在物理学、工程学、机械学等领域都有广泛的应用。
以下是一些具体的例子,用于进一步说明线速度计算公式的应用:
1、直线运动中的线速度
假设一个人以每秒 2 米的速度向前奔跑,那么他在 10 秒内通过的路程长度为 20 米。因此,他的线速度可以通过以下公式计算:
v = s / t = 20 m / 10 s = 2 m/s
2、圆周运动中的线速度
假设一个车轮的半径为 0.5 米,车轮每秒钟转 10 圈,则车轮每秒钟通过的路程长度为:
s = 2πr = 2π x 0.5m = 3.14m
因此,车轮每秒钟的线速度为:
v = s / t = 3.14 m / 1 s = 3.14 m/s
3、自转运动中的线速度
假设地球的自转周期为 24 小时,地球的半径为 6,371 千米,则地球表面上赤道的线速度为:
v = ωr = 2π / T x 6,371 km = 1,674 km/h
这意味着地球上赤道的某一点每小时通过 1,674 公里的路程。