(河北省最新)在图一至三中,点B是线段AC的中点,点D是线段CE的中点
(河北省最新)在图一至三中,点B是线段AC的中点,点D是线段CE的中点。四边形BCGF和CDHN都是正方形。AE的中点M.1.点E在AC的延长线上,点N与点B重合时,点M...
(河北省最新)在图一至三中,点B是线段AC的中点,点D是线段CE的中点。四边形BCGF和CDHN都是正方形。AE的中点M.
1.点E在AC的延长线上,点N与点B重合时,点M与点C重合时,求证:FM=MH,FM垂直MH。 展开
1.点E在AC的延长线上,点N与点B重合时,点M与点C重合时,求证:FM=MH,FM垂直MH。 展开
2个回答
展开全部
图呢
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)证明:∵四边形BCGF和CDHN都是正方形,
又∵点N与点G重合,点M与点C重合,
∴FB = BM = MG = MD = DH,∠FBM =∠MDH = 90°.
∴△FBM ≌ △MDH.
∴FM = MH.
∵∠FMB =∠DMH = 45°,∴∠FMH = 90°.∴FM⊥HM.
(2)证明:连接MB、MD,如图,
设FM与AC交于点P.
∵B、D、M分别是AC、CE、AE的中点,
∴MD∥BC,且MD = BC = BF;MB∥CD,
且MB=CD=DH.
∴四边形BCDM是平行四边形.
∴ ∠CBM =∠CDM.
又∵∠FBP =∠HDC,∴∠FBM =∠MDH.
∴△FBM ≌ △MDH.
∴FM = MH,
且∠MFB =∠HMD.
∴∠FMH =∠FMD-∠HMD =∠APM-∠MFB =∠FBP = 90°.
∴△FMH是等腰直角三角形.
(3)是.
又∵点N与点G重合,点M与点C重合,
∴FB = BM = MG = MD = DH,∠FBM =∠MDH = 90°.
∴△FBM ≌ △MDH.
∴FM = MH.
∵∠FMB =∠DMH = 45°,∴∠FMH = 90°.∴FM⊥HM.
(2)证明:连接MB、MD,如图,
设FM与AC交于点P.
∵B、D、M分别是AC、CE、AE的中点,
∴MD∥BC,且MD = BC = BF;MB∥CD,
且MB=CD=DH.
∴四边形BCDM是平行四边形.
∴ ∠CBM =∠CDM.
又∵∠FBP =∠HDC,∴∠FBM =∠MDH.
∴△FBM ≌ △MDH.
∴FM = MH,
且∠MFB =∠HMD.
∴∠FMH =∠FMD-∠HMD =∠APM-∠MFB =∠FBP = 90°.
∴△FMH是等腰直角三角形.
(3)是.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询