数列极限题.
lim(1+1/2)(1+1/(2^2))(1+1/(2^4))(1+1/(2^8))……(1+1/(2^(2^n-1)))=?...
lim(1+1/2)(1+1/(2^2))(1+1/(2^4))(1+1/(2^8))……(1+1/(2^(2^n-1)))=?
展开
1个回答
展开全部
将式子乘上一个(1-1/2),再除掉,这样利用平方差公式,
(1+1/2)(1+1/(2^2))(1+1/(2^4))(1+1/(2^8))……(1+1/(2^(2^n-1)))
=(1-1/2)(1+1/2)(1+1/(2^2))(1+1/(2^4))(1+1/(2^8))……(1+1/(2^(2^n-1)))/(1-1/2)
=2*(1-1/2^(2^n))
所以
lim(1+1/2)(1+1/(2^2))(1+1/(2^4))(1+1/(2^8))……(1+1/(2^(2^n-1)))=lim2*(1-1/2^(2^n))
当n无穷大时,1/2^(2^n)趋近于0,
所以
lim(1+1/2)(1+1/(2^2))(1+1/(2^4))(1+1/(2^8))……(1+1/(2^(2^n-1)))=2
(1+1/2)(1+1/(2^2))(1+1/(2^4))(1+1/(2^8))……(1+1/(2^(2^n-1)))
=(1-1/2)(1+1/2)(1+1/(2^2))(1+1/(2^4))(1+1/(2^8))……(1+1/(2^(2^n-1)))/(1-1/2)
=2*(1-1/2^(2^n))
所以
lim(1+1/2)(1+1/(2^2))(1+1/(2^4))(1+1/(2^8))……(1+1/(2^(2^n-1)))=lim2*(1-1/2^(2^n))
当n无穷大时,1/2^(2^n)趋近于0,
所以
lim(1+1/2)(1+1/(2^2))(1+1/(2^4))(1+1/(2^8))……(1+1/(2^(2^n-1)))=2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询