2个回答
展开全部
星云(Nebulae)
--------------------------------------------------------------------------------
起初,星云(Nebula)的涵义很广,包含了除行星和彗星外的几乎所有延展型天体。星云(Nebula)英语词根的原意为“云”。天文学中,常常可见旧术语在现代被混淆地使用。我们有时将星系、各种星团及宇宙空间中各种类型的尘埃和气体都称为星云。但严格地说,星云应该是宇宙中的尘埃和气体,而不是一组恒星。
恒星系(Galaxy)
本世纪初,这样的云雾状天体也被称为星云。但现在我们知道,它们其实是离地球远比那些星云遥远的庞大恒星系。我们的银河系也是已知的上亿个恒星系中的一个。一个典型恒星系的跨度约为十万光年。
球状星团(Globular Clusters)
球状星团是一组吸引在一起的上千颗(有时多达上百万颗)恒星。它们的主体是年龄非常大的恒星。恒星系的银盘中不存在球状星团,它们分布在星系的晕轮中。在银河系中有好几百个球状星团。一个典型的球状星团的跨度不到一百光年。
开放星团(Open Clusters)
开放星团由上百颗年轻恒星松散地聚集在一起形成。它们通常互相吸引得并不十分紧密,并且在经过一段天文学上的很短时间后便各奔东西。它们也被称为“星系星团”,因为它们通常存在于星系的银盘中。一个典型的开放星团的跨度小于50光年。
气体星云(Emission Nebulae)
气体星云主要由高温气体组成。组成星云的物质受附近的恒星发出的紫外线影响而带有电荷,并在它们降压的过程中放出射线(在很大程度上类似于霓虹灯)。这类星云通常都是红色的,因为它们的主要成份氢在此情况下呈红色(其他物质呈不同的颜色,但氢的含量远高于其他物质)。气体星云通常会孕育新的恒星。
尘埃星云(Reflection Nebulae)
尘埃星云是由尘埃组成的星云,它仅仅靠反射附近恒星发出的光而能被看到。尘埃星云也常常成为恒星诞生的场所。它们看上去常呈蓝色,因为它们反射的蓝光较多。尘埃星云和气体星云一般都会呆在一起,有时它们一起被称作云雾状星云(Diffuse Nebulae)。
暗星云(Dark Nebulae)
暗星云也是由尘埃组成,由于恒星发出的光来自它们的背后,才使它们看上去显得很“黑暗”。暗星云的物理组成与尘埃星云基本相同,它们之间的唯一不同是光源、星云和地球的相对位置。暗星云也经常与尘埃星云和气体星云呆在一起。一个典型的云雾状星云的跨度在一百光年左右。
行星状星云(Planetary Nebulae)
行星状星云实际是一些即将消亡的恒星抛射出的气体外壳。我们的太阳在约50亿年后也可能会产生一个行星状星云。它与行星并无直接联系,之所以称之为行星状星云是因为它在小型的天文望远镜中看起来通常类似于一颗行星。一个典型的行星状星云的跨度小于一光年。
超新星遗迹(Supernova Remnants)
一颗恒星在其生命的最后阶段有时会突然发生爆炸,其亮度大大增加,景观壮丽无比。这就是超新星。一颗超新星的亮度可能会超过平时整个恒星系亮度的总和。当一切都过去之后,恒星的碎片被抛到了宇宙空间,形成了超新星遗迹。典型的超新星遗迹的跨度至少有一光年。
星云(Nebulae)
--------------------------------------------------------------------------------
起初,星云(Nebula)的涵义很广,包含了除行星和彗星外的几乎所有延展型天体。星云(Nebula)英语词根的原意为“云”。天文学中,常常可见旧术语在现代被混淆地使用。我们有时将星系、各种星团及宇宙空间中各种类型的尘埃和气体都称为星云。但严格地说,星云应该是宇宙中的尘埃和气体,而不是一组恒星。
恒星系(Galaxy)
本世纪初,这样的云雾状天体也被称为星云。但现在我们知道,它们其实是离地球远比那些星云遥远的庞大恒星系。我们的银河系也是已知的上亿个恒星系中的一个。一个典型恒星系的跨度约为十万光年。
球状星团(Globular Clusters)
球状星团是一组吸引在一起的上千颗(有时多达上百万颗)恒星。它们的主体是年龄非常大的恒星。恒星系的银盘中不存在球状星团,它们分布在星系的晕轮中。在银河系中有好几百个球状星团。一个典型的球状星团的跨度不到一百光年。
开放星团(Open Clusters)
开放星团由上百颗年轻恒星松散地聚集在一起形成。它们通常互相吸引得并不十分紧密,并且在经过一段天文学上的很短时间后便各奔东西。它们也被称为“星系星团”,因为它们通常存在于星系的银盘中。一个典型的开放星团的跨度小于50光年。
气体星云(Emission Nebulae)
气体星云主要由高温气体组成。组成星云的物质受附近的恒星发出的紫外线影响而带有电荷,并在它们降压的过程中放出射线(在很大程度上类似于霓虹灯)。这类星云通常都是红色的,因为它们的主要成份氢在此情况下呈红色(其他物质呈不同的颜色,但氢的含量远高于其他物质)。气体星云通常会孕育新的恒星。
尘埃星云(Reflection Nebulae)
尘埃星云是由尘埃组成的星云,它仅仅靠反射附近恒星发出的光而能被看到。尘埃星云也常常成为恒星诞生的场所。它们看上去常呈蓝色,因为它们反射的蓝光较多。尘埃星云和气体星云一般都会呆在一起,有时它们一起被称作云雾状星云(Diffuse Nebulae)。
暗星云(Dark Nebulae)
暗星云也是由尘埃组成,由于恒星发出的光来自它们的背后,才使它们看上去显得很“黑暗”。暗星云的物理组成与尘埃星云基本相同,它们之间的唯一不同是光源、星云和地球的相对位置。暗星云也经常与尘埃星云和气体星云呆在一起。一个典型的云雾状星云的跨度在一百光年左右。
行星状星云(Planetary Nebulae)
行星状星云实际是一些即将消亡的恒星抛射出的气体外壳。我们的太阳在约50亿年后也可能会产生一个行星状星云。它与行星并无直接联系,之所以称之为行星状星云是因为它在小型的天文望远镜中看起来通常类似于一颗行星。一个典型的行星状星云的跨度小于一光年。
超新星遗迹(Supernova Remnants)
一颗恒星在其生命的最后阶段有时会突然发生爆炸,其亮度大大增加,景观壮丽无比。这就是超新星。一颗超新星的亮度可能会超过平时整个恒星系亮度的总和。当一切都过去之后,恒星的碎片被抛到了宇宙空间,形成了超新星遗迹。典型的超新星遗迹的跨度至少有一光年。
Some 13 billion years ago in a distant cluster of stars, a planet formed. Remarkably it's still there, according to data from the Hubble Space Telescope.
by Ron Koczor
Long before our Sun and Earth ever existed, a Jupiter-sized planet formed around a sun-like star. Now, almost 13 billion years later, NASA's Hubble Space Telescope has precisely measured the mass of this farthest and oldest known planet.
The ancient planet has had a remarkable history, because it has wound up in an unlikely, rough neighbourhood. It orbits a peculiar pair of burned-out stars in the crowded core of a globular star cluster.
The new Hubble findings close a decade of speculation and debate as to the true nature of this ancient world, which takes a century to complete each orbit. The planet is 2.5 times the mass of Jupiter. Its very existence provides tantalizing evidence the first planets were formed rapidly, within a billion years of the Big Bang, leading astronomers to conclude planets may be very abundant in the universe.
The planet lies near the core of the ancient globular star cluster M4, located 5,600 light-years away in the northern-summer constellation Scorpius. Globular clusters are deficient in heavier elements, because they formed so early in the universe that heavier elements had not been cooked up in abundance in the nuclear furnaces of stars. Some astronomers have therefore argued that globular clusters cannot contain planets, because planets are often made of such elements. This conclusion was seemingly bolstered in 1999 when Hubble failed to find close-orbiting hot Jupiter -type planets around the stars of the globular cluster 47 Tucanae. Now, it seems astronomers were just looking in the wrong place, and gas-giant worlds, orbiting at greater distances from their stars, could be common in globular clusters.
Our Hubble measurement offers tantalizing evidence that planet formation processes are quite robust and efficient at making use of a small amount of heavier elements. This implies that planet formation happened very early in the universe, said Steinn Sigurdsson of Pennsylvania State University.
This is tremendously encouraging that planets are probably abundant in globular star clusters, agrees Harvey Richer of the University of British Columbia (UBC) in Vancouver. He bases this conclusion on the fact a planet was uncovered in such an unlikely place: orbiting two captured stars, a helium white dwarf and a rapidly spinning neutron star, near the crowded core of a globular cluster. In such a place, fragile planetary systems tend to be ripped apart due to gravitational interactions with neighbouring stars.
The story of this planet's discovery began in 1988, when the pulsar, called PSR B1620-26, was discovered in M4. It is a neutron star spinning just under 100 times per second and emitting regular radio pulses like a lighthouse beam. The white dwarf was quickly found through its effect on the clock-like pulsar, as the two stars orbited each other twice per year. Sometime later, astronomers noticed further irregularities in the pulsar that implied a third object was orbiting the others. This new object was suspected to be a planet, but it also could have been a brown dwarf or a low-mass star. Debate over its true identity continued throughout the 1990s.
Sigurdsson, Richer, and their co-investigators settled the debate by at last measuring the planet's actual mass through some ingenious detective work. They had exquisite Hubble data from the mid-1990s taken to study white dwarfs in M4. Sifting through these observations, they were able to detect the white dwarf orbiting the pulsar and measure its colour and temperature. Using evolutionary models computed by Brad Hansen of the University of California, Los Angeles, the astronomers estimated the white dwarf's mass.
This in turn was compared to the amount of wobble in the pulsar's signal, allowing the team to calculate the tilt of the white dwarrbit as seen from Earth. When combined with the radio studies of the wobbling pulsar, this critical piece of evidence told them the tilt of the planet's orbit, too, and so the precise mass could at last be known. With a mass of only 2.5 Jupiter's, the object is too small to be a star or brown dwarf and must instead be a planet. The planet is likely a gas giant without a solid surface like the Earth.
A 13-billion year old planet orbiting a pair of long-dead stars in a crowded globular cluster: even for the Hubble Space Telescope, that's amazing!
http://cache.baidu.com/c?word=globular%2Cclusters&url=http%3A//ch%2Eshvoong%2Ecom/science/6459%2DANCIENT%2DPLANET/&b=0&a=3&user=baidu
--------------------------------------------------------------------------------
起初,星云(Nebula)的涵义很广,包含了除行星和彗星外的几乎所有延展型天体。星云(Nebula)英语词根的原意为“云”。天文学中,常常可见旧术语在现代被混淆地使用。我们有时将星系、各种星团及宇宙空间中各种类型的尘埃和气体都称为星云。但严格地说,星云应该是宇宙中的尘埃和气体,而不是一组恒星。
恒星系(Galaxy)
本世纪初,这样的云雾状天体也被称为星云。但现在我们知道,它们其实是离地球远比那些星云遥远的庞大恒星系。我们的银河系也是已知的上亿个恒星系中的一个。一个典型恒星系的跨度约为十万光年。
球状星团(Globular Clusters)
球状星团是一组吸引在一起的上千颗(有时多达上百万颗)恒星。它们的主体是年龄非常大的恒星。恒星系的银盘中不存在球状星团,它们分布在星系的晕轮中。在银河系中有好几百个球状星团。一个典型的球状星团的跨度不到一百光年。
开放星团(Open Clusters)
开放星团由上百颗年轻恒星松散地聚集在一起形成。它们通常互相吸引得并不十分紧密,并且在经过一段天文学上的很短时间后便各奔东西。它们也被称为“星系星团”,因为它们通常存在于星系的银盘中。一个典型的开放星团的跨度小于50光年。
气体星云(Emission Nebulae)
气体星云主要由高温气体组成。组成星云的物质受附近的恒星发出的紫外线影响而带有电荷,并在它们降压的过程中放出射线(在很大程度上类似于霓虹灯)。这类星云通常都是红色的,因为它们的主要成份氢在此情况下呈红色(其他物质呈不同的颜色,但氢的含量远高于其他物质)。气体星云通常会孕育新的恒星。
尘埃星云(Reflection Nebulae)
尘埃星云是由尘埃组成的星云,它仅仅靠反射附近恒星发出的光而能被看到。尘埃星云也常常成为恒星诞生的场所。它们看上去常呈蓝色,因为它们反射的蓝光较多。尘埃星云和气体星云一般都会呆在一起,有时它们一起被称作云雾状星云(Diffuse Nebulae)。
暗星云(Dark Nebulae)
暗星云也是由尘埃组成,由于恒星发出的光来自它们的背后,才使它们看上去显得很“黑暗”。暗星云的物理组成与尘埃星云基本相同,它们之间的唯一不同是光源、星云和地球的相对位置。暗星云也经常与尘埃星云和气体星云呆在一起。一个典型的云雾状星云的跨度在一百光年左右。
行星状星云(Planetary Nebulae)
行星状星云实际是一些即将消亡的恒星抛射出的气体外壳。我们的太阳在约50亿年后也可能会产生一个行星状星云。它与行星并无直接联系,之所以称之为行星状星云是因为它在小型的天文望远镜中看起来通常类似于一颗行星。一个典型的行星状星云的跨度小于一光年。
超新星遗迹(Supernova Remnants)
一颗恒星在其生命的最后阶段有时会突然发生爆炸,其亮度大大增加,景观壮丽无比。这就是超新星。一颗超新星的亮度可能会超过平时整个恒星系亮度的总和。当一切都过去之后,恒星的碎片被抛到了宇宙空间,形成了超新星遗迹。典型的超新星遗迹的跨度至少有一光年。
星云(Nebulae)
--------------------------------------------------------------------------------
起初,星云(Nebula)的涵义很广,包含了除行星和彗星外的几乎所有延展型天体。星云(Nebula)英语词根的原意为“云”。天文学中,常常可见旧术语在现代被混淆地使用。我们有时将星系、各种星团及宇宙空间中各种类型的尘埃和气体都称为星云。但严格地说,星云应该是宇宙中的尘埃和气体,而不是一组恒星。
恒星系(Galaxy)
本世纪初,这样的云雾状天体也被称为星云。但现在我们知道,它们其实是离地球远比那些星云遥远的庞大恒星系。我们的银河系也是已知的上亿个恒星系中的一个。一个典型恒星系的跨度约为十万光年。
球状星团(Globular Clusters)
球状星团是一组吸引在一起的上千颗(有时多达上百万颗)恒星。它们的主体是年龄非常大的恒星。恒星系的银盘中不存在球状星团,它们分布在星系的晕轮中。在银河系中有好几百个球状星团。一个典型的球状星团的跨度不到一百光年。
开放星团(Open Clusters)
开放星团由上百颗年轻恒星松散地聚集在一起形成。它们通常互相吸引得并不十分紧密,并且在经过一段天文学上的很短时间后便各奔东西。它们也被称为“星系星团”,因为它们通常存在于星系的银盘中。一个典型的开放星团的跨度小于50光年。
气体星云(Emission Nebulae)
气体星云主要由高温气体组成。组成星云的物质受附近的恒星发出的紫外线影响而带有电荷,并在它们降压的过程中放出射线(在很大程度上类似于霓虹灯)。这类星云通常都是红色的,因为它们的主要成份氢在此情况下呈红色(其他物质呈不同的颜色,但氢的含量远高于其他物质)。气体星云通常会孕育新的恒星。
尘埃星云(Reflection Nebulae)
尘埃星云是由尘埃组成的星云,它仅仅靠反射附近恒星发出的光而能被看到。尘埃星云也常常成为恒星诞生的场所。它们看上去常呈蓝色,因为它们反射的蓝光较多。尘埃星云和气体星云一般都会呆在一起,有时它们一起被称作云雾状星云(Diffuse Nebulae)。
暗星云(Dark Nebulae)
暗星云也是由尘埃组成,由于恒星发出的光来自它们的背后,才使它们看上去显得很“黑暗”。暗星云的物理组成与尘埃星云基本相同,它们之间的唯一不同是光源、星云和地球的相对位置。暗星云也经常与尘埃星云和气体星云呆在一起。一个典型的云雾状星云的跨度在一百光年左右。
行星状星云(Planetary Nebulae)
行星状星云实际是一些即将消亡的恒星抛射出的气体外壳。我们的太阳在约50亿年后也可能会产生一个行星状星云。它与行星并无直接联系,之所以称之为行星状星云是因为它在小型的天文望远镜中看起来通常类似于一颗行星。一个典型的行星状星云的跨度小于一光年。
超新星遗迹(Supernova Remnants)
一颗恒星在其生命的最后阶段有时会突然发生爆炸,其亮度大大增加,景观壮丽无比。这就是超新星。一颗超新星的亮度可能会超过平时整个恒星系亮度的总和。当一切都过去之后,恒星的碎片被抛到了宇宙空间,形成了超新星遗迹。典型的超新星遗迹的跨度至少有一光年。
Some 13 billion years ago in a distant cluster of stars, a planet formed. Remarkably it's still there, according to data from the Hubble Space Telescope.
by Ron Koczor
Long before our Sun and Earth ever existed, a Jupiter-sized planet formed around a sun-like star. Now, almost 13 billion years later, NASA's Hubble Space Telescope has precisely measured the mass of this farthest and oldest known planet.
The ancient planet has had a remarkable history, because it has wound up in an unlikely, rough neighbourhood. It orbits a peculiar pair of burned-out stars in the crowded core of a globular star cluster.
The new Hubble findings close a decade of speculation and debate as to the true nature of this ancient world, which takes a century to complete each orbit. The planet is 2.5 times the mass of Jupiter. Its very existence provides tantalizing evidence the first planets were formed rapidly, within a billion years of the Big Bang, leading astronomers to conclude planets may be very abundant in the universe.
The planet lies near the core of the ancient globular star cluster M4, located 5,600 light-years away in the northern-summer constellation Scorpius. Globular clusters are deficient in heavier elements, because they formed so early in the universe that heavier elements had not been cooked up in abundance in the nuclear furnaces of stars. Some astronomers have therefore argued that globular clusters cannot contain planets, because planets are often made of such elements. This conclusion was seemingly bolstered in 1999 when Hubble failed to find close-orbiting hot Jupiter -type planets around the stars of the globular cluster 47 Tucanae. Now, it seems astronomers were just looking in the wrong place, and gas-giant worlds, orbiting at greater distances from their stars, could be common in globular clusters.
Our Hubble measurement offers tantalizing evidence that planet formation processes are quite robust and efficient at making use of a small amount of heavier elements. This implies that planet formation happened very early in the universe, said Steinn Sigurdsson of Pennsylvania State University.
This is tremendously encouraging that planets are probably abundant in globular star clusters, agrees Harvey Richer of the University of British Columbia (UBC) in Vancouver. He bases this conclusion on the fact a planet was uncovered in such an unlikely place: orbiting two captured stars, a helium white dwarf and a rapidly spinning neutron star, near the crowded core of a globular cluster. In such a place, fragile planetary systems tend to be ripped apart due to gravitational interactions with neighbouring stars.
The story of this planet's discovery began in 1988, when the pulsar, called PSR B1620-26, was discovered in M4. It is a neutron star spinning just under 100 times per second and emitting regular radio pulses like a lighthouse beam. The white dwarf was quickly found through its effect on the clock-like pulsar, as the two stars orbited each other twice per year. Sometime later, astronomers noticed further irregularities in the pulsar that implied a third object was orbiting the others. This new object was suspected to be a planet, but it also could have been a brown dwarf or a low-mass star. Debate over its true identity continued throughout the 1990s.
Sigurdsson, Richer, and their co-investigators settled the debate by at last measuring the planet's actual mass through some ingenious detective work. They had exquisite Hubble data from the mid-1990s taken to study white dwarfs in M4. Sifting through these observations, they were able to detect the white dwarf orbiting the pulsar and measure its colour and temperature. Using evolutionary models computed by Brad Hansen of the University of California, Los Angeles, the astronomers estimated the white dwarf's mass.
This in turn was compared to the amount of wobble in the pulsar's signal, allowing the team to calculate the tilt of the white dwarrbit as seen from Earth. When combined with the radio studies of the wobbling pulsar, this critical piece of evidence told them the tilt of the planet's orbit, too, and so the precise mass could at last be known. With a mass of only 2.5 Jupiter's, the object is too small to be a star or brown dwarf and must instead be a planet. The planet is likely a gas giant without a solid surface like the Earth.
A 13-billion year old planet orbiting a pair of long-dead stars in a crowded globular cluster: even for the Hubble Space Telescope, that's amazing!
http://cache.baidu.com/c?word=globular%2Cclusters&url=http%3A//ch%2Eshvoong%2Ecom/science/6459%2DANCIENT%2DPLANET/&b=0&a=3&user=baidu
参考资料: http://www.tmmu.com/yzqg/nebulae/
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
What are you doing?!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询