函数f(x)=(x-1)/(x+2)的单调区间怎么算?求详细过程
展开全部
f(x)=(x-1)/(x+2)
1、减区间不存在,增区间是:(-∞,-2),(-2,+∞)
2、证明:【证明函数在(-2,+∞)上递增】
设:x1>x2>-2,则:
f(x1)-f(x2)
=[(x1-1)/(x1+2)]-[(x2-1)/(x2+2)]
=[3(x1-x2)]/[(x1+2)(x2+2)]
因为:x1-x2>0、x1+2>0、x2+2>0,则:
f(x1)-f(x2)>0
即:f(x1)>f(x2)
所以函数f(x)在(-2,+∞)上递增
1、减区间不存在,增区间是:(-∞,-2),(-2,+∞)
2、证明:【证明函数在(-2,+∞)上递增】
设:x1>x2>-2,则:
f(x1)-f(x2)
=[(x1-1)/(x1+2)]-[(x2-1)/(x2+2)]
=[3(x1-x2)]/[(x1+2)(x2+2)]
因为:x1-x2>0、x1+2>0、x2+2>0,则:
f(x1)-f(x2)>0
即:f(x1)>f(x2)
所以函数f(x)在(-2,+∞)上递增
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询