已知在三角形ABC中,AB=AC,∠A=100°,CD是∠acb的平分线 求证:BC=CD+AD

mbcsjs
2014-01-13 · TA获得超过23.4万个赞
知道顶级答主
回答量:7.6万
采纳率:77%
帮助的人:3.2亿
展开全部
∵AB=AC,∠A=100°
∴∠ABC=∠ACB=(180°-∠A)/2=40°
∵CD平分∠ACB
∴∠ACD=∠BCD=1/2∠ACB=20°
∴∠ADC=180°-∠A-∠ACD=180°-100°-20°=60°
延长CD使CE=BC,连接BE
∴∠CEB=∠CBE=(180°-∠BCD)/2=80°
∴∠EBD=∠CBE-∠ABC=80°-40°=40°
∴∠EBD=∠ABC
在CB上截取CF=AC,连接DF
∵CD=CD
∠ACD=∠FCD=20°
∴△ACD≌△FCD(SAS)
∴AD=DF
∠DFC=∠A=100°
∴∠BDF=∠DFC-∠ABC=100°-40°=60°
∵∠EDB=∠ADC=60°
∴∠EDB=∠BDF
∵∠EBD=∠FBD=40°
BD=BD
∴△BDE≌△BDF(ASA)
∴DE=DF=AD
∵BC=CE=DE+CD
∴BC=AD+CD
更多追问追答
追问
能画个图吗?
追答

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式