已知正项数列an满足an2-nan-(n+1)=0,数列bn的前n项和为Sn,且Sn=2bn-2(1
已知正项数列an满足an2-nan-(n+1)=0,数列bn的前n项和为Sn,且Sn=2bn-2(1)求数列an,bn的通项公式(2)求数列1/(anlog2bn)的前n...
已知正项数列an满足an2-nan-(n+1)=0,数列bn的前n项和为Sn,且Sn=2bn-2(1)求数列an,bn的通项公式
(2)求数列1/(anlog2bn)的前n项和Tn 展开
(2)求数列1/(anlog2bn)的前n项和Tn 展开
展开全部
an^2-nan-(n+1)=0
(an +1)[an-(n+1)]=0
an=-1(数列为正项数列,an>0,舍去)或an=n+1
n=1时,b1=S1=2b1-2
b1=2
n≥2时,
bn=Sn-S(n-1)=2bn -2-[2b(n-1)-2]
bn=2b(n-1)
bn/b(n-1)=2,为定值,数列{bn}是以2为首项,2为公比的等比数列
bn=2×2^(n-1)=2ⁿ
数列{an}的通项公式为an=n+1;数列{bn}的通项公式为bn=2ⁿ
1/[anlo2(bn)]
=1/[(n+1)log2(2ⁿ)]
=1/[n(n+1)]
=1/n -1/(n+1)
Tn=1/1-1/2+1/2-1/3+...+1/n -1/(n+1)
=1-1/(n+1)
=n/(n+1)
(an +1)[an-(n+1)]=0
an=-1(数列为正项数列,an>0,舍去)或an=n+1
n=1时,b1=S1=2b1-2
b1=2
n≥2时,
bn=Sn-S(n-1)=2bn -2-[2b(n-1)-2]
bn=2b(n-1)
bn/b(n-1)=2,为定值,数列{bn}是以2为首项,2为公比的等比数列
bn=2×2^(n-1)=2ⁿ
数列{an}的通项公式为an=n+1;数列{bn}的通项公式为bn=2ⁿ
1/[anlo2(bn)]
=1/[(n+1)log2(2ⁿ)]
=1/[n(n+1)]
=1/n -1/(n+1)
Tn=1/1-1/2+1/2-1/3+...+1/n -1/(n+1)
=1-1/(n+1)
=n/(n+1)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询