物理竞赛书中瞬时速度v=dx/dt,这里的d是什么符号?我刚上高中,不太懂。

可参见这里看一下我的意思http://zhidao.baidu.com/link?url=JALLHN0S7B1Y5-ikfDD91LkPybN9UKmLvWS1YdgF... 可参见这里看一下我的意思
http://zhidao.baidu.com/link?url=JALLHN0S7B1Y5-ikfDD91LkPybN9UKmLvWS1YdgFMhl42QU8O_pArFuPxjn7bw7GaKLS7ZB0iBUEvk58xEtd5q
展开
shslhzf
2013-12-14 · TA获得超过1.1万个赞
知道大有可为答主
回答量:2227
采纳率:66%
帮助的人:1146万
展开全部
d是微分符号。
dx是指x的微分,就是x的微小变量,可以理解为x的变化量△x=x2-x1。
dt是指x的微分,就是t的微小变量,可以理解为x的变化量△t=t2-t1。
可以这样理解:瞬时速度就是在某一时刻前或后很短的一段时间内的位移与时间的比值。
黑科技
2013-12-14 · TA获得超过1425个赞
知道小有建树答主
回答量:2135
采纳率:0%
帮助的人:1175万
展开全部
上了大学,学高数的时候就懂了。简单解释,d是求微分的,dx表示取极小的一段x。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
TG_Lin
推荐于2016-12-02 · TA获得超过3027个赞
知道小有建树答主
回答量:615
采纳率:0%
帮助的人:499万
展开全部
这里的「d」是源自於当年 Leibniz 发明的微积分符号中,放在某个变量之前,是用来代表某数「无穷小量(infinitesimal)」的意思。比如像您所举「dx」,就是距离(x)的无穷小的变量。
关於微分的 infinitesimal(d)的概念,牵涉到西方数学对於「无限」的概念问题。一般都是先用「Δ」,也就是先从一个有限的微小变量「Δx」出发,然後再让它一直趋向於无限小的变化。过去,这里一直有逻辑学上的问题(即趋於无穷小之後的变量如何定义?),一直到 Leibniz 和 Newton 发明微积分时,才将这里的问题给解决掉。
因此瞬间速度的定义 v = dx / dt,若能画成距离对时间的函数图形(纵轴为 x;横轴 t)来看,那就是该图形於每一点上的「切线斜率」了。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式