【请教】关于【介值定理】到底用在开区间还是闭区间

同济的教材上,定理表述为闭区间[a,b]上的连续函数f(x)在端点处具有不同的函数值f(a)=A,f(b)=B,A不等于B。C是A与B之间任意一个数,则在开区间(a,b)... 同济的教材上,定理表述为闭区间[a,b]上的连续函数f(x)在端点处具有不同的函数值f(a)=A,f(b)=B,A不等于B。C是A与B之间任意一个数,则在开区间(a,b)内至少存在一点ξ使得f(ξ)=C问题1:C是A与B之间任意一个数,这句话的意思是C∈闭区间[A,B],还是C∈开区间(A,B)?问题2:为什么定理表述中ξ在开区间(a,b)内存在而不是在闭区间?是因为端点函数值A≠B吗?但是同济的教材上在证明闭区间上连续函数必取得介于最大值M与最小值m之间的一切值时,设m=f(x1),M=f(x2),标注了m≠M,然后却说,在闭区间[x1,x2]上应用介值定理得上述推论,这不矛盾么?问题3:上一段中,介于最大值M与最小值m之间,意味着是开区间还是闭区间?陈文灯的指南里对于介值定理的描述是,μ是介于两个端点值之间的一切实数,则在【闭区间】上存在一点ξ,使得μ等于f(ξ)。 这个描述和教材上的区别是没有指出端点值相等于否,那么在考试的时候,应用介值定理ξ到底是在开区间还是闭区间存在? 展开
 我来答
匿名用户
2013-12-15
展开全部
我觉得如果用的到介值定理最大最小值定理,题设条件应该都会是闭区间,即使自己构造也是闭区间,本来说的就是闭区间连续函数介值定理,证明应用时候不管怎样都写闭区间,不会太碍事。个人感觉……
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2013-12-15
展开全部
这个没啥纠结的啊 端点必然可以取到啊,而且是明显成立的,所以可以忽略,反正是连续函数,说开或闭都一样
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2013-12-15
展开全部
这不明显都说的过去么...如果C就是=A或者B那显然成立啊
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式